Electronic Supplementary Information

 Ti_3C_2 MXene as A New Nanofiller for Robust and Conductive Elastomer Composites

Qunyang Li^{1, &}, Bangchao Zhong^{1, &}, Wenqiang Zhang¹, Zhixin Jia^{1, *}, Demin Jia¹, Si Qin², Jing Wang², Joselito M. Razal^{2, *}, Xungai Wang²

¹Key Lab of Guangdong for High Property and Functional Polymer Materials, South

China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China.

²Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus,

Geelong, Victoria 3216, Australia.

*Corresponding author, E-mail address: 18620901980m@sina.cn (Zhixin Jia); joselito.razal@deakin.edu.au (Joselito M. Razal)

[&]amp;Qunyang Li and Bangchao Zhong contributed equally to this work.

Table S1 Comparison of tensile strength and thermal conductivity with previously reported SBR composites.

Rubber	Filler	Filler Content	Tensile strength (MPa)	Thermal conductivity (W•m ⁻¹ •K ⁻¹)	Ref.
SBR	Ti_3C_2	4phr	11.1	0.61	This work
SBR	GE ^a	5phr	16.2	0.25	1
SBR	GE	10.5 vol%	~5	~0.43	2
SBR	RGOb	3 wt%	~4.6	~0.27	3
SBR	GOc	4 phr	~8.5	~0.19	4
SBR	BN^{d}	10.5 vol%	~7	~0.28	5
SBR	BNNSe	10.5 vol%	~16	~0.43	5
SBR	CNTs ^f	10phr	4.5		6
SBR	PCNTs ^g	3 wt%	~5.5	~0.30	3
SBR	CNTs/CB	7phr/40phr	~22	0.30	7

^a Graphene; ^b Reduced graphene oxide; ^c Graphene oxide; ^d Boron nitride; ^e Hexagonal boron nitride nanosheet; ^f Carbon nanotubes; ^g Polymer functionalized carbon nanotubes; ^h Carbon black.

References:

- [1] Xing W, Tang M, Wu J, et al. Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method. Composites science and technology, 2014, 99: 67-74.
- [2] Araby S, Meng Q, Zhang L, et al. Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 2014, 55(1): 201-210.
- [3] Song S, Zhang Y. Carbon nanotube/reduced graphene oxide hybrid for

simultaneously enhancing the thermal conductivity and mechanical properties of styrene-butadiene rubber. Carbon, 2017, 123: 158-167.

- [4] Yin B, Wang J, Jia H, He J, Zhang X, Xu Z. Enhanced mechanical properties and thermal conductivity of styrene-butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. Journal of Materials Science. 2016;51(12):5724-5737.
- [5] Wu X, Liu H, Tang Z, et al. Scalable fabrication of thermally conductive elastomer/boron nitride nanosheets composites by slurry compounding. Composites Science and Technology, 2016, 123: 179-186.
- [6] Zhou X W, Zhu Y F, Liang J. Preparation and properties of powder styrene-butadiene rubber composites filled with carbon black and carbon nanotubes. Materials research bulletin, 2007, 42(3): 456-464.
- [7] Fu Y, Yang C, Lvov Y M, et al. Antioxidant sustained release from carbon nanotubes for preparation of highly aging resistant rubber. Chemical Engineering Journal, 2017, 328: 536-545.