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1. Charge Assignment at 77 K

1.1. Device A

Figure S1. a) Full charge stability diagram of device A at 77 K. b) and c) corresponding current-gate voltage traces at ±0.4 V (b) or 
±0.2 V (c). The resonances below –2 V were unstable and not suited to high-resolution low-temperature measurements. However, 
from our method, the assignment of the transition at approximately –3 V is a 1-2 transition, which indicates that the GQD follows 
the Aufbau principle on a ladder of spin-degenerate orbitals with significant level spacing. The reason for the large differences in 
current between the different orbitals is the fact that the electronic coupling between the electrodes / molecule is significantly 
different for different molecular orbitals.

Figure S2. a) Zoomed charge stability diagram of device A at 77 K showing the two resonance regions described in the main text. 
The areas where the current is highest are indicated with yellow and purple on the positive and negative side, respectively. These 
areas are on the side of the doublet state, as proven in the main text. b) Current vs. gate voltage traces at a bias voltage of 0.4 V 
(red) and –0.4 V (blue). At this voltage the two SET regions overlap in the center (around Vg = 0.5 V), but the differences between 
positive and negative peak voltages (for the left resonance 0.3 nA and –0.14 nA, for the right resonance 0.15 and –0.25 nA) are 
larger than the contribution of the overlapping resonance (approximately 0.07 nA and –0.06 nA, respectively). c) Current vs. gate 
voltage traces at a bias voltage of 0.2 V (red) and –0.2 V (blue). At these voltages the SET regions do not overlap and the current 
asymmetry is clearly visible.
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1.2. Porphyrin Monomer Devices

Figure S3. Stability diagrams and current-gate voltage traces (Vb ± 0.2 V) of single porphyrin transistors with various anchor groups.1 
The anchor groups are indicated in the figures: HBC: hexabenzocoronene, TDP: 1,3,6-tri(dodecoxy)pyrene, TBF: tetrabenzofluorene, 
2py: 2-pyrene. For the device in Figure S3b, the transition described is at 60 Vg. The charge state of each SMT at Vg = 0 was assigned 
using the method described in the main text, and indicated in each figure. Out of 12 devices, 7 were 0-1 (singlets), 4 were doublets 
(1-2) and 1 had a charge degeneracy point at Vg = 0 (device in Figure S3l).
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2. Explaining the current asymmetry

To describe the current through a molecular transistor in the weakly coupled regime (i.e.,  > ), we 𝐸𝑐 >  𝑘𝐵𝑇  Γ

use a rate-equation model:2

𝐼 = |𝑒|
𝛾 𝑆

𝑜𝑥𝛾 𝐷
𝑟𝑒𝑑 ‒ 𝛾 𝐷

𝑜𝑥𝛾 𝑆
𝑟𝑒𝑑

𝛾 𝑆
𝑜𝑥 + 𝛾 𝐷

𝑟𝑒𝑑 + 𝛾 𝐷
𝑜𝑥 + 𝛾 𝑆

𝑟𝑒𝑑

Here,  is the rate of the oxidation or reduction reaction for , occurring at the source or drain 𝛾𝑙
𝑟 𝑟 = 𝑜𝑥, 𝑟𝑒𝑑

electrodes for = S, D, respectively. The reduction (oxidation) rates are calculated from the overlap of the 𝑙 

occupied (unoccupied) levels in the electrodes (given by the Fermi-Dirac distribution function: )) with 𝑓(𝜖)

the rate constant . The rate constant can be further deconstructed into a density of states function 𝑘𝑟(𝜖)

which we will call  (it has units of eV-1), as well as the electronic coupling with electrode  ( ) and a 𝑘̂𝑟(𝜖) 𝑙 Γ𝑙

statistical factor ( ) originating from the Pauli exclusion and Aufbau principles (see below). This leads to 𝜎𝑟

the following description for the rates:3

𝛾 𝑙
𝑟𝑒𝑑 =

Γ𝑙𝜎𝑟𝑒𝑑

𝜋 ∫𝑓𝑙(𝜖)𝑘̂𝑟𝑒𝑑(𝜖)𝑑𝜖

𝛾 𝑙
𝑜𝑥 =

Γ𝑙𝜎𝑜𝑥

𝜋 ∫[1 ‒ 𝑓𝑙(𝜖)]𝑘̂𝑜𝑥(𝜖)𝑑𝜖

We first note that on resonance (i.e., when the position of the molecular level coincides with the Fermi 

levels of the unbiased leads, = 0), and for a symmetrically applied bias voltage (which is experimentally 𝜖𝑀 

approximated due to fairly equal capacitance between the molecular species and each electrode):2

𝑘̂(𝜖) = 𝑘̂𝑟𝑒𝑑(𝜖) = 𝑘̂𝑜𝑥( ‒ 𝜖)

𝑓𝑆(𝜖) = 1 ‒ 𝑓𝐷( ‒ 𝜖)

1 ‒ 𝑓𝑆(𝜖) = 𝑓𝐷( ‒ 𝜖)

which allows us to rewrite rates in terms of each other as follows:

𝛾 𝑆
𝑜𝑥 =

Γ𝑆𝜎𝑜𝑥

𝜋 ∫𝑓𝐷( ‒ 𝜖)𝑘̂( ‒ 𝜖)𝑑𝜖 =
Γ𝑆𝜎𝑜𝑥

Γ𝐷𝜎𝑟𝑒𝑑
𝛾 𝐷

𝑟𝑒𝑑

and we define the ratios:

𝛼 =
Γ𝑆

Γ𝐷
, 𝛽 =

𝜎𝑜𝑥

𝜎𝑟𝑒𝑑

This approach allows us to write the oxidation rate at the drain electrode in terms of the reduction rate at 
the source electrode. Inserting the resulting expressions into the rate equation gives us:

𝐼 = 𝛽
𝛼𝛾 𝐷

𝑟𝑒𝑑
2 ‒ 𝛼 ‒ 1𝛾 𝑆

𝑟𝑒𝑑
2

(1 + 𝛼𝛽)𝛾 𝐷
𝑟𝑒𝑑 + (1 + 𝛼 ‒ 1𝛽)𝛾 𝑆

𝑟𝑒𝑑

=
𝛼𝛽

1 + 𝛼𝛽
(𝛾 𝐷

𝑟𝑒𝑑 + 𝛼 ‒ 1𝛾 𝑆
𝑟𝑒𝑑)(𝛾 𝐷

𝑟𝑒𝑑 ‒ 𝛼 ‒ 1𝛾 𝑆
𝑟𝑒𝑑)

(𝛾 𝐷
𝑟𝑒𝑑 +

1 + 𝛼 ‒ 1𝛽
1 + 𝛼𝛽

𝛾 𝑆
𝑟𝑒𝑑)
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In situations where , either  or  will be approximately zero, so we can neglect terms |𝑉𝑏| ≫ 𝑘𝐵𝑇 𝛾 𝐷
𝑟𝑒𝑑 𝛾 𝑆

𝑟𝑒𝑑

including , thus we can write:𝛾 𝐷
𝑟𝑒𝑑𝛾 𝑆

𝑟𝑒𝑑

𝐼 =
𝛼𝛽

1 + 𝛼𝛽

(𝛾 𝐷
𝑟𝑒𝑑 +

1 + 𝛼 ‒ 1𝛽
1 + 𝛼𝛽

𝛾 𝑆
𝑟𝑒𝑑)(𝛾 𝐷

𝑟𝑒𝑑 ‒ 𝛼 ‒ 1 𝛼 ‒ 1 + 𝛽

1 + 𝛼 ‒ 1𝛽
𝛾 𝑆

𝑟𝑒𝑑)
(𝛾 𝐷

𝑟𝑒𝑑 +
1 + 𝛼 ‒ 1𝛽

1 + 𝛼𝛽
𝛾 𝑆

𝑟𝑒𝑑)
This can be simplified to:

𝐼 =
𝛼𝛽

1 + 𝛼𝛽
𝛾 𝐷

𝑟𝑒𝑑 ‒
𝛽

𝛼 + 𝛽
𝛾 𝑆

𝑟𝑒𝑑

Now, inserting the definitions of  and , we obtain:𝛼 𝛽

𝐼 =
Γ𝐷𝜎𝑟𝑒𝑑Γ𝑆𝜎𝑜𝑥

Γ𝐷𝜎𝑟𝑒𝑑 + Γ𝑆𝜎𝑜𝑥

1
𝜋∫𝑓𝐷(𝜖)𝑘̂(𝜖)𝑑𝜖 ‒

Γ𝑆𝜎𝑟𝑒𝑑Γ𝐷𝜎𝑜𝑥

Γ𝑆𝜎𝑟𝑒𝑑 + Γ𝐷𝜎𝑜𝑥

1
𝜋∫𝑓𝑆(𝜖)𝑘̂(𝜖)𝑑𝜖

and finally:

𝐼 =
1
𝜋∫[𝜉𝐷𝑓𝐷(𝜖) ‒ 𝜉𝑆𝑓𝑆(𝜖)]𝑘̂(𝜖)𝑑𝜖

where:

𝜉𝐷 =
Γ𝐷𝜎𝑟𝑒𝑑Γ𝑆𝜎𝑜𝑥

Γ𝐷𝜎𝑟𝑒𝑑 + Γ𝑆𝜎𝑜𝑥
    ,   𝜉𝑆 =

Γ𝑆𝜎𝑟𝑒𝑑Γ𝐷𝜎𝑜𝑥

Γ𝑆𝜎𝑟𝑒𝑑 + Γ𝐷𝜎𝑜𝑥
  

Together  and  determine the asymmetry in the current at positive/negative voltage. Under conditions 𝜉𝐷 𝜉𝑆

of strongly asymmetric electrode coupling these simplify further. For example, if :Γ𝑆 ≫ Γ𝐷

𝜉𝐷 = Γ𝐷𝜎𝑟𝑒𝑑    ,   𝜉𝑆 = Γ𝐷𝜎𝑜𝑥  

𝐼 =
Γ𝐷

𝜋 ∫[𝜎𝑟𝑒𝑑𝑓𝐷(𝜖) ‒ 𝜎𝑜𝑥𝑓𝑆(𝜖)]𝑘̂(𝜖)𝑑𝜖

Conversely if :Γ𝐷 ≫ Γ𝑆

𝜉𝐷 = Γ𝑆𝜎𝑜𝑥    ,   𝜉𝑆 = Γ𝑠𝜎𝑟𝑒𝑑  

𝐼 =
Γ𝑆

𝜋 ∫[𝜎𝑜𝑥𝑓𝐷(𝜖) ‒ 𝜎𝑟𝑒𝑑𝑓𝑆(𝜖)]𝑘̂(𝜖)𝑑𝜖

For a solely spin-degenerate frontier orbital,  /  is either 1/2 or 2/1 depending on the transition 𝜎𝑜𝑥 𝜎𝑟𝑒𝑑

involved. Therefore, a ratio of 2 is observed between the magnitudes of current at different polarities of Vb 
in the case of strongly asymmetric coupling. 
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3. Extracting the rate constants from the conductance trace at mK 
temperatures.

Using the expression for electric current from the previous section, the differential conductance is given by

𝐺 =
𝑑𝐼

𝑑𝑉𝑏
=

1
𝜋∫

𝑑
𝑑𝑉𝑏

[𝜉𝐷𝑓𝐷(𝜖) ‒ 𝜉𝑆𝑓𝑆(𝜖)]𝑘̂(𝜖)𝑑𝜖

At T = 0 K, the Fermi-Dirac functions become step functions, and therefore their derivatives become delta 
function (remembering a symmetrically applied bias):

𝐺 =
1
𝜋∫[𝜉𝐷𝛿(𝜖 +

𝑉𝑏

2 ) + 𝜉𝑆𝛿(𝜖 ‒
𝑉𝑏

2 )]𝑘̂(𝜖)𝑑𝜖

Evaluating the above integral yields the following:

𝐺 =
1
𝜋[𝜉𝐷𝑘̂( ‒

𝑉𝑏

2 ) + 𝜉𝑆𝑘̂(𝑉𝑏

2 )]
We can then calculate the value of  by subtraction of the following equations:𝑘'(𝑥)

𝜋𝐺(2𝑥) = 𝜉𝐷𝑘̂( ‒ 𝑥) + 𝜉𝑆𝑘̂(𝑥)

𝜋𝐺( ‒ 2𝑥) = 𝜉𝐷𝑘̂(𝑥) + 𝜉𝑆𝑘̂( ‒ 𝑥)

𝜋𝐺(2𝑥)
𝜉𝐷

‒
𝜋𝐺( ‒ 2𝑥)

𝜉𝑆
=

𝜉𝑆

𝜉𝐷
𝑘̂(𝑥) +

𝜉𝐷

𝜉𝑆
𝑘̂(𝑥) = (𝜉𝑆

𝜉𝐷
+

𝜉𝐷

𝜉𝑆
)𝑘̂(𝑥) = (𝜉𝐷

2 + 𝜉𝑆
2

𝜉𝑆𝜉𝐷 )𝑘̂(𝑥)

and therefore

𝑘̂(𝑥) = 𝜋
𝜉𝑆𝐺(2𝑥) + 𝜉𝐷𝐺( ‒ 2𝑥)

𝜉𝐷
2 + 𝜉𝑆

2

The values of  and  can be obtained from the asymmetry in the current at high bias. However, since 𝜉𝑆 𝜉𝐷

small changes in the current can lead to large changes in , especially when  is very large or very small, it 𝜉𝑙 𝛼

is advised to fit their values to the current instead using the master equation.

From the DOS, , we can obtain the rate constants for both reactions at both electrodes . However, 𝑘̂(𝑥) 𝑘𝑙
𝑟(𝑥)

as  contain cross-terms in  and , they cannot be independently determined on resonance. Instead, we 𝜉𝑙 Γ𝑙 𝜎𝑟

must make an assumption regarding either the electronic coupling or the statistical factor. In most cases, it 

is easier to assume a certain orbital degeneracy, and set  and  to the corresponding values. The 𝜎𝑟𝑒𝑑 𝜎𝑜𝑥

simplest case for molecular transistors is a spin-degenerate level, where, depending on the transition 

involved, either:  and , or  and . For each case we extract  and  by fitting 𝜎𝑟𝑒𝑑 = 2 𝜎𝑜𝑥 = 1 𝜎𝑟𝑒𝑑 = 1 𝜎𝑜𝑥 = 2 Γ𝑆 Γ𝐷

to the resonant IV trace. Thereby from each case we can generate a combination of the four rate constants 

 which describe the current based on which of the statistical factors we set to 2.𝑘𝑙
𝑟(𝑥)
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4. Statistical factors for spin and orbital degeneracy.

For a single spin-degenerate level with no orbital degeneracy, two situations exist for transport of 
electrons. Either the transition occurs from a unoccupied to a singly occupied orbital (0-1 transition), or 
from a singly occupied to a doubly occupied orbital (1-2 transition). For the former case, electrons of either 

spin can hop onto the molecule, therefore , but only that specific electron can tunnel off, therefore 𝜎𝑟𝑒𝑑 = 2

. For the 1-2 transition, only an electron with spin opposite of the electron already residing in the 𝜎𝑜𝑥 = 1

SOMO of the molecule can hop onto the molecule, therefore , but either electron in what is now 𝜎𝑟𝑒𝑑 = 1

the HOMO of the molecule can hop off, therefore . This is the simplest case that is used in the main 𝜎𝑜𝑥 = 2

body of this work, shown in Figure 1c. Less trivial situations which involve molecular structures with doubly 

or triply degenerate frontier orbitals are depicted in Figure S4a and b. The corresponding values for  𝜎𝑟𝑒𝑑

and  are shown next to the electrodes in Figure S4. We assume the validity of the Aufbau principle, i.e., 𝜎𝑜𝑥

degenerate orbitals are filled by single electrons before pairing opposite spin electrons into the same 
orbital. In such systems, it is also assumed that the electronic structure remains unchanged upon charging 
the molecule. In reality it is likely that charging changes the degeneracy of the orbitals and that therefore 
different statistical factor arise based on the molecule than the ones predicted herein. This should be taken 
into account when considering systems with higher degeneracy.

 

Figure S4. Schematic representation of the statistical factors for electron transport through molecules with either doubly 
degenerate (a) or triply degenerate (b) orbitals. The reactive electrons / holes are indicated in red, and the arrow indicates the 
electron spin (up or down). S = Source electrode, D = Drain electrode.
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5. Molecular orbital structure of the porphyrin molecule

Figure S5. Four frontier orbitals of a model of the molecule (TDP2-zinc porphyrin) used in the SMT in Figure 5, calculated using DFT 
(B3LYP/6-31G(d)) in Gaussian09. For simplicity, and to help converging, the long alkyl tails on the Si atoms, as well as the pyrene 
anchor groups have been replaced by methyl groups. The energies of the levels show the lack of orbital degeneracy in the orbitals 
involved in electron transfer. The spacing between subsequent charge transitions is the energy level spacing plus a charging energy, 
and therefore we expect the spin state of the molecule to oscillate between singlet and doublet as the charge on the molecule 
changes by one.  
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