Supporting Information: Stimulating Antibacterial Activities of Graphitic Carbon Nitride Nanosheets with Plasma Treatment

Haiying Cui, ^{a+} Zonglin Gu, ^{b+} Xiaochen Chen, ^{c+} Lin Lin, ^{*a} Zegao Wang, Xing Dai, ^b Zaixing Yang, ^b Lei Liu, ^d Ruhong Zhou, ^{*e} and Mingdong Dong ^{*c}

^aSchool of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China

^bInstitute of Quantitative Biology and Medicine, Soochow University, Suzhou 215123,

China

^cInterdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark

^dSchool of Materials, Jiangsu University, Zhenjiang 212013, China

^eDepartment of Chemistry, Columbia University, New York 10027, United States

[†]These authors contributed equally

Optimal Conditions of Nitrogen Plasma Treatment

In order to study the effects of power output and illumination time of plasma on the antibacterial activity of $g-C_3N_4$, and search for the best treatment conditions simultaneously, an optimization experiment was performed. The antibacterial activity of N-g-C₃N₄ was enhanced with the increased power of nitrogen plasma as expected (Figure S1a). The antibacterial efficiency of g-C₃N₄ treated with 1000 W nitrogen plasma was more than 100 times that of $g-C_3N_4$ treated with 200 W nitrogen plasma. However, the g-C₃N₄ treated with 500, 750, and 1000 W nitrogen plasma had very similar antibacterial efficiency. The biggest difference was only 1.82 time between 1000 W and 500 W. Thus, 500 W was set as the optimal power of nitrogen plasma to save energy. With the treatment of 500 W nitrogen plasma for 1, 3, and 5min respectively, the antibacterial activities of N-g-C₃N₄ were shown as Figure S1b, Supporting Information. The influence of illumination time was much less than output power. Thence, 1 min was set as the optimal illumination time. All of the $N-g-C_3N_4$ samples used below were obtained by treating with nitrogen plasma at 500 W for 1min.

Figure S1. Optimization of plasma treatment conditions. a) Effects of different output powers of nitrogen plasma on antibacterial properties of N-g-C₃N₄; b) Effects of illumination time of 500W nitrogen plasma on antibacterial properties of N-g- C_3N_4 .

Figure S2. SEM image of the a) as prepared $g-C_3N_4$ and b) N-g-C₃N₄. Most of the particles showed flake-like morphology. The scale bar is $1\mu m$.

Figure S3. Influence of raw materials to apparent density of $g-C_3N_4$ powders

Figure S4. Left side: a-c) Influences of the bacterial concentrations to antibacterial efficiency for *E.coli*. Right side: influences of concentrations of g-C₃N₄ to the antibacterial efficiency for *E.coli*.

Figure S5. The simulation system of $g-C_3N_4$ nanosheet interaction with bacterial membrane. The $g-C_3N_4$ nanosheet was shown with cyan (carbon) and blue (nitrogen) spheres. One fixed atom on $g-C_3N_4$ was displayed with red sphere. The phosphorus atoms of lipids were depicted by orange balls while other atoms of lipids were exhibited with lines. The Na⁺ and Cl⁻ ions were shown with purples and lime balls. The boundaries of the simulated periodic cell were shown with silver surfaces.

Figure S6. The $g-C_3N_4$ orientation change when binding to membrane. The $g-C_3N_4$ was shown with spheres while the lipids were displayed by gray surfaces.

Table S1. Influence of raw materials to apparent density of g-C₃N₄ powders

Raw materials	Apparent density of powders
Cyanoguanidine	0.404 g/cm ³
Melamine	0.359 g/cm ³
Urea	0.057 g/cm ³

Table S2. Lennard-Jones parameters of g-C₃N₄.

Element	nm	kJ/mol
Carbon	0.340	0.360
Nitrogen	0.325	0.711