Electronic Supplementary Information

Oxygen-vacancy engineered Fe_2O_3 nanoarrays as free-standing

electrode for flexible asymmetric supercapacitors

Fenfen Han, Jia Xu, Jie Zhou, Jian Tang* and Weihua Tang*

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China E-mail: fnzhoujie@njust.edu.cn and whtang@njust.edu.cn

Table of content

1. Materials characterizations	2
2. Electrochemical measurements	2
3. Results and discussion	.3
4. References	8

1. Materials characterizations

Morphologies and element distribution of composites were evaluated at field emission scanning electron microscope (FE-SEM, J Hitachi S-4800 at an accelerating voltage of 10 kV). The transmission electron microscope (TEM) images were obtained from FEI Tecnai-12 at an accelerating voltage of 120 kV. High-resolution transmission electron microscopy (HR-TEM) was performed on a FEI Tecnai F30 at an accelerating voltage of 80 kV. X-ray diffraction (XRD) patterns were recorded from Bruker D8 Advance Diffractometer, using the Cu K α radiation (1.54 Å) at 40 kV and 30 mA. X-ray photoelectron spectroscopy (XPS) analysis were carried out on a Thermo ESCALAB 250 X-ray photoelectron spectrometer with Al K α radiation (1486.7 eV). Raman spectroscopy (RM 2000 microscopic confocal Raman spectrometer) was performed by employing a 514 nm laser beam. Electron paramagnetic resonance (EPR) spectra were collected from Bruker EMX-10/12.

2. Electrochemical measurements

All electrochemical measurements were carried out on a CHI 760D electrochemical workstation (Shanghai, China). The three-electrode tests were performed in 2 M LiOH solution with a platinum foil as the counter electrode and a saturated calomel electrode as the reference electrode. The conductive memebranes (1.0 cm \times 2.0 cm) were used directly as working electrodes. For symmeterical supercapacitor, PVA/LiOH gel was used as solid electrolyte. The areal capacitance in three-electrode cell is calculated according **Equation S1**:

$$C_A = \frac{I \times \Delta t}{S \times \Delta V} \tag{1}$$

where, I is the discharge current, Δt is the discharged time, S is the electrode area and ΔV is the voltage window.

The areal energy density (E) and power density (P) of symmeterical supercapacitor are calculated according to **Equation S2&3**:

$$E = \frac{1}{2} \times C_A \times \Delta V^2 \tag{2}$$

$$P = \frac{E}{\Delta t} \tag{3}$$

where, C_A is the areal specific capacitance, Δt is the discharged time, and ΔV is the voltage window.

3. Results and discussions

Fig. S1. SEM patterns of (a) pristine CC and PDA coated CC.

Fig. S2. XRD patterns for CN-Fe₂O₃-1h, CN-Fe₂O₃-2h, CN-Fe₂O₃-3h and CN-Fe₂O₃-4h.

Fig. S3. SEM images for CN-Fe₂O₃ at different reduction time. a) 1 h, b) 2 h, c) 3 h and d) 4 h.

Fig. S4. a-d) CV curves of CN-Fe₂O₃-xh. e) GCD curves of CN-Fe₂O₃-xh at the current density of 0.5 mA cm⁻².

Fig. S5. The fitted Nyquist plots of a) A-Fe₂O₃; b) N-Fe₂O₃; c-d) CN-Fe₂O₃-xh

Fig. S6. GCD curves of A-Fe₂O₃, N-Fe₂O₃ and CN-Fe₂O₃-2h at a current density of 0.5 mA cm⁻².

Electrodes	Voltage window (V)	C _A (F cm ⁻²)	Long-term C _A retention	Ref.
ASV-FO	-0.9	0.42 (0.5 mA cm ⁻²)	90% 5000	S2
N-Fe ₂ O ₃	-0.8	0.38 (0.5 mA cm ⁻²)	95.2% 10000	S3
SiC@Fe ₂ O ₃	-1.2	1.00 (0.5 mA cm ⁻²)	86.6% 5000	S4
Fe ₂ O ₃ @ACC	-0.8	2.78 (0.5 mA cm ⁻²)	92% 10000	S5
Fe ₂ O ₃ -P	-0.8	0.34 (1 mA cm ⁻²)	88% 9000	S6
Ni/GF/H-Fe ₂ O ₃	-1	0.69 (1 mA cm ⁻²)	95.4% 50000	S7
α-Fe ₂ O ₃ /C	-1	0.43 (1 mA cm ⁻²)	73.2% 4000	S 8
S-α-Fe ₂ O ₃ @C/OCNTF	-1	1.23 (2 mA cm ⁻²)		S 9
CN-Fe ₂ O ₃ -2h	-1.1	2.63 (0.5 mA cm ⁻²)	86.7% 10000	This work

Table S1. Comparison of the charge storage with free-standing Fe₂O₃ electrodes.

Fig. S7. XRD patterns of CN-Fe₂O₃-2h after long-term cycles.

Fig. S8. a) SEM images of MnO₂ on CC fibers. b) XRD patterns of pristine MnO₂.

Fig. S9. a) CV curves of MnO_2 . b) GCD curves of MnO_2 at different current density from 0.5 mA cm⁻² to 5 mA cm⁻².

Fig. S10. CV curves of CN- Fe_2O_3 - $2h//MnO_2$ ASC device.

4. References

- [S1] Y. Zeng, Y. Han, Y. Zhao, Y. Zeng, M. Yu, Y. Liu, H. Tang, Y. Tong, X. Lu, Adv. Energy Mater. 2015, 5, 1402176.
- [S2] S. Sun, T. Zhai, C. Liang, S.V. Savilov and H. Xia, *Nano Energy*. 2018, 45, 390-397.
- [S3] X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M.S. Balogun and Y. Tong, *Adv. Mater.* 2014, 26, 3148-3155.
- [S4] J. Zhao, Z. Li, X. Yuan, Z. Yang, M. Zhang, A. Meng and Q. Li, Adv. Energy Mater. 2018, 8, 1702787.
- [S5] J. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang, S. Luo, X. Zhou, C. Zhang, X. Gu and C. Hu, *Nano Energy* 2019, 57, 379-387.
- [S6] H. Liang, C. Xia, A.-H. Emwas, D.H. Anjum, X. Miao and H.N. Alshareef, *Nano Energy* 2018, **49**, 155-162.
- [S7] K. Chi, Z. Zhang, Q. Lv, C. Xie, J. Xiao, F. Xiao and S. Wang, ACS Appl. Mater. Interfaces 2017, 9, 6044-6053.
- [S8] D. Chen, S. Zhou, H. Quan, R. Zou, W. Gao, X. Luo and L. Guo, Chem. Eng. J. 2018, 341, 102-111.
- [S9] Z. Zhou, Q. Zhang, J. Sun, B. He, J. Guo, Q. Li, C. Li, L. Xie, Y. Yao, ACS nano 2018, 12, 9333-9341.