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I. HAMILTON OPERATOR AND MATERIAL PARAMETERS

The properties of the TMD monolayer are described by the following many-particle Hamiltonian:

H = H0 +HCoul +Hel-l +Hel-ph (1)

=
∑
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†
αkaαk +
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~ωλqb†λqbλq

+
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αβkk′q

Wqa
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†
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†
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gαkλqa
†
αk+qaαk(bλq + b†λ,−q) (2)

Here a(†)αk denotes the annihilation (creation) operator of an electron in band α = c, v with momentum k, and b(†)λq
annihilates (creates) a phonon in mode λ with momentum q. For the electronic bandstructure εαk we use the effective
mass approximations deduced from ab initio calculation (PBE) in ref. [1], while the phonon dispersion ωλq is descibed
in Debye (long range acoustic) or Einstein approximation (optical and short range acoustic) with sound velocities
and energies adopted from DFPT calculations in ref.[2]. For the Coulomb interaction Wq we derive a modified form
of the potential in ref.’s [3, 4] for charges in a thin film of thickness d surrounded by a dielectric environment. In
this work we explicitly take into account anisotropic dielectric tensors. Solving the Poisson equation with the above
described boundary conditions yields Wq = Vq/εscr(q), with the bare 2D-Fourier transformed Coulomb potental Vq
and a non-local screening,

εscr(q) = κ1 tanh(
1

2
[α1dq − ln(

κ1 − κ2
κ1 + κ2

)]), (3)

where κi =

√
ε
‖
i ε
⊥
i and αi =

√
ε
‖
i /ε
⊥
i account for the parallel and perpendicular component of the dielectric tensor

ε of the monolayer (i = 1) and the environment (i = 2). The momentum matrix element Mαβ
k = −i~〈αk|O|βk〉 is

derived from a two band k · p Hamiltonian, which in vicinity of the K point yields [5]

|Mvc
k · eσ|2 ≡ |Mσ|2 =

1

2
[
a0m0t

~
(1 + σ)]2. (4)

The next neighbor hopping integral t = ~/a0
√
Eg/(me +mh) is determined by the effective massesme/h of electrons

and holes and the single particle bandgap Eg at the K-point, while σ = ±1 for left-(right-)handed circularly polarized
light. In Table I we summarize the used parameters for hBN encapsulated WSe2 for the evaluation of Eq. (3) and
(4).

Finally the electron phonon coupling gαkλq is approximated with the generic form of a deformation potential

Parameter Value Reference
Lattice constant a0 0.334 nm [6]
Layer thickness d 0.652 nm [6]
dielec. para. ε‖WSe2 15.1 [6]
dielec. perp. ε⊥WSe2 7.5 [6]
dielectr. hBN κhBN 4.5 [7]
Bandgap Eg(hBN enc.) 2.38 eV(2.02 eV) [1, 8]
Electron mass (at K)me 0.29m0 [1]
Hole mass (at K) mh 0.36m0 [1]

Table I. List of the used parameters for the calculation of exciton eigenenergies and wavefunctions in hBN encapsulated WSe2
monloayers.
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gαkλq ≈

√
~

2ρAωλq
Dα
λq. (5)

Here ρ denotes the surface mass density of the monolayer and A the area of the system. For the coupling constant
Dα
λq we adopt the approximations deduced from DFPT calculations in ref. [2], where long range acoustic phonons

couple linear in momentum Dα
λq|intra ac ≈ D

α(1)
λ q, while optical phonons and short range acoustic modes couple

with a constant strength Dα
λq|inter ac,opt ≈ D

α(0)
λ in vicinity of high symmetry points. We take into account the

LA,TA,LO,TO and A1 mode for intravalley as well as scattering of electrons to the Λ,Λ′ and K ′ valley and hole
scattering to the Γ or K ′ point. The constants D(0) and D(1) for all possible intra and intervalley scattering channels
are listed in ref. [2].

II. WANNIER EQUATION AND INTERVALLEY SCATTERING

The linear optical response of a system is obtained from the Heisenberg equation of motion for the microscopic
polarisation pkQ = 〈a†c,k+αQav,k−βQ〉 [9]. We use relative (k) and center-of mass coordinates (Q) with α(β) =

mc(v)/(mc + mv). The effective Coulomb interaction between charge carriers in TMDs leads to a strong coupling
of polarisations at different relative momenta k, yielding an excitonic eigen spectrum for interband transitions. To
decouple the equations of motion we perform a basis transformation by expanding the polarisation in terms of exciton
wave functions pkQ =

∑
ν Φ̃νQ(k)PνQ. To diagonalize the equations of motion for PνQ, the basis functions have to

fullfill the Wannier equation,

(εc,k+αQ − εv,k−βQ)Φ̃νQ(k)−
∑
q

WqΦ̃νQ(k + q) = EνQΦ̃νQ(k). (6)

Within the vicinity of minima and maxima of valence and conduction band, we approximate the dispersions quadrat-
ically, which allows us to separate relative and center of mass motion. When Kc denotes the conduction band valley
and Kv the valence band valley, we find Φ̃νQ(k) = Φ̃ν(k) = Ψ̃ν(k − αKv − βKc), with Ψ̃ obeying the effective
electron-hole Schroedinger equation,

~2k2

2mr
Ψ̃ν(k)−

∑
q

WqΨ̃ν(k + q) = Ebind
ν Ψ̃ν(k), (7)

where mr = (mcmv)/(mc +mv) is the reduced exciton mass for the corresponding valley masses of electrons (mc)
and holes (mv). Furthermore, the parabolic approximation yields EνQ = Ebind

ν +~2(Q− [Kc−Kv])2/(2[mc +mv]) +
εcKc − εvKv . Note, that exciton wavefunctions with different valley configurations are centered at different momenta.
Therefore, the exciton form factor for scattering from ν = (n,K −K) to µ = (m,K − Λ) reads

Fνµ(αµq) =
∑
k

Φ̃∗ν(k)Φ̃µ(k + αµq) =
∑
k

Ψ̃∗n(k)Ψ̃m(k + αµ[q− (Λ−K)]) (8)

Hence, the wavefunction overlap in Eq. (8) gets maximized for a momentum transfer q = Λ−K conecting K and Λ
valley, while the overlap for intravalley scattering decreases with growing q. Furthermore, to account for the complex
phase of the electron-phonon coupling, we discard mixed terms in the calculation of the exciton-phonon coupling, i.e.

|Gνµλq|
2 ≈

∑
η=e,h

|gηλqFνµ(qη)|2, (9)

assuming similar weights for polar and non-polar coupling mechanism [10] (e.g. optical deformation potential vs.
Froehlich interaction) .
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III. EXPERIMENTAL PROCEDURE AND LINEWIDTH EXTRACTION

The studied hBN-encapsulated WSe2 sample was obtained by mechanical exfoliation of hBN and WSe2 flakes onto
polydimethylsiloxane (PDMS) film and subsequent stacking via stamp transfer [11] onto SiO2/Si substrate. First, thin
hBN flakes (provided by T. Taniguchi and K. Watanabe, NIMS) were stamped onto a 100◦C preheated 295 nm thick
SiO2/Si substrate at ambient conditions. Then a WSe2 monolayer was stamped on top of the hBN layer, followed
by placing an additional hBN layer on top of the structure at 70◦C substrate temperature and ambient conditions.
The sample was annealed in high vacuum at 150◦C for 4-5 hours after each individual stamping process. The sample
was scanned to find large, homogeneous areas of several micrometers with narrow exciton resonances in both light
emission and reflectance, indicating successful transfer and good interlayer coupling.

Reflectance measurements were performed using a spectrally broadband tungsten-halogen lamp for illumination.
The reflected signals were collected both on the sample (Rs) and on the SiO2/Si substrate reference (Rr), spectrally
dispersed in a grating spectrometer, and detected by a cooled CCD camera. The sample was placed in an optical
microscopy cryostat cooled by liquid helium. The heat sink temperature was tuned between 4 and 300K, giving the
system sufficient time to reach equilibrium between individual measurements. The lattice temperature of the sample
was independently confirmed by the relative energy shift of the exciton resonance.

For the analysis, the acquired reflectance signals are presented in terms of reflectance contrast, defined as RC =
(Rs − Rr)/(Rr − Rbg), where Rbg denotes the background signal without illumination. RC thus corresponds to the
relative change in the reflectance of the sample with respect to the bare SiO2/Si substrate. A representative reflectance
contrast spectrum of the WSe2 monolayer at the temperature of 4K is shown in Fig. 1 (a). The corresponding first
derivative of RC with respect to the photon energy is plotted in Fig. 1 (b). In the studied spectral range, the optical
response of the sample is dominated by the A exciton ground state resonance (1s) at 1.721 eV, first excited state
transition (2s) at 1.853 eV and a weak feature of the second excited state (3s) at 1.876 eV. The absence of pronounced
features below the 1s resonance indicate negligible free charge carrier densities.

To extract the exciton peak parameters, the energy-dependent dielectric function of the WSe2 monolayer ε(E) is
parameterized with multiple Lorentzian resonances:

ε(E) = εb +

N∑
j=1

fj
E2
j − E2 − iEΓnr,j

, (10)

where fj , Ej , and Γnr,j represent the oscillator strength, peak energy, and the purely non-radiative damping of the
resonance with the index j, respectively. The linewidth is defined as full-width-half-maximum of the respective peak
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Figure 1. (a) Reflectance contrast of the hBN-encapsulated WSe2 monolayer at 4K together with the simulated spectrum
from the multi-Lorentzian model. (b) First-order derivative of the measured and simulated reflectance contrast. (c), (d) Real
and imaginary parts of the parameterized dielectric function used in the simulation. In the imaginary part, non-radiative
linewidths Γnr of the ground and the first two excited stated exciton transitions are indicated. (e) Corresponding simulated
optical absorption spectrum of the n = 1, 2, 3 exciton resonances. Total linewidths are indicated by Γtot. (f) Measured
continuous-wave photoluminescence spectrum of the same sample at 4K.
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in the imaginary part. Only a small number N of the resonances is included in the simulation. In the spectral
range of interest, only those clearly visible in the measured spectra are considered, i.e., the exciton 1s, 2s, and 3s
states. The reflectance contrast is then computed using a transfer-matrix formalism [12] taking into account multi-
layer interference effects due to the presence of the hBN layers and the SiO2/Si substrate . For the studied structure,
the thickness of the SiO2 layer was set to 296 nm and the thickness of the top and bottom hBN layers - to 16.4 nm
(using refractive index of 2.2) to obtain the measured overall spectral shape of the reflectance contrast. The exciton
peak parameters are then adjusted to match the measured first order derivative. The simulated spectra are presented
alongside experimental data in Figs. 1 (a) and (b), exhibiting good agreement and allowing for a reasonable extraction
of the exciton peak parameters.

Real and imaginary parts of the dielectric function corresponding to the simulated response are presented in
Figs. 1 (c) and (d), respectively. We note, that the width of the resonances in the imaginary part is determined
only by the non-radiative broadening Γnr. In contrast to that, total linewidths of the same peaks in the optical
absorption include additional broadening due to the radiative coupling, i.e., finite oscillator strength. The absorption
spectrum computed from the same dielectric function is shown in Fig. 1 (e). For the 1s resonance, in particular, the
total linewidth Γtot of the absorption peak is extracted to be 5.3meV compared to the purely non-radiative broadening
Γnr of 2.5meV. Total linewidths are used for comparison with theory throughout the paper.

Here, we note that the resonance linewidths in the emission spectra should also correspond to the total linewidths
from absorption, i.e., include both radiative and non-radiative contributions. For comparison, a representative photolu-
minescence (PL) spectrum obtained at roughly the same position on the WSe2 sample as the reflectance measurements
is shown in Fig. 1 (f). A continuous-wave laser emitting at 532 nm was used for the excitation with a power of 10µW
focused to a spot of about 1µm. The emission from the exciton ground and excited states is highlighted in the data.
The signals associated with more complex exciton states below the 1s resonance (trions, biexcitons, localized states
etc.) are shown in gray. The linewidth of the exciton resonance is found to be in the range of 4-5meV in PL, close to
the values obtained in the absorption spectra.

IV. TEMPERATURE DEPENDENT SPECTRA

Experimentally measured reflectance contrast spectra are presented as first derivatives in the Fig. 2 (a) and (b) in the
spectral range of ground and excited state resonances, respectively. The simulation results from the multi-Lorentzian
peak analysis, discussed in the previous section, are plotted alongside the measured data. Three exciton states, 1s,
2s, and 3s, are observed at 4K. The 2s state is detected up to room temperature and the 3s state is resolved at
100K and below. As the temperature increases, the exciton resonances shift to lower energies in good agreement with
the literature results on as-exfoliated samples [13]. We note that the shifts of the ground and excited states are very
similar, i.e., the shift of the 2s state closely follows that of the 1s resonance with small deviations on the order of
several meV towards room temperature. The energy shifts are accompanied by pronounced spectral broadening due
to exciton-phonon scattering, analyzed and discussed in the main manuscript in detail.
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Figure 2. (a) Measured reflectance contrast derivatives of the hBN-encapsulated WSe2 sample for temperatures from 4 to
300K together with the simulation results. The spectra are presented in the spectral range of the 1s ground state exciton
resonance. (b) Same as (a) in the spectral range of excited state resonances. The data are vertically offset for clarity.
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