Supplementary Information

Silver Fractal Dendrites for Highly Sensitive and Transparent Polymer

Thermistors

Jongyoun Kim, Donghwa Lee, Kyutae Park, Hyeonjin Goh, and Youngu Lee*

Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and

Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu,

42988, Republic of Korea

*Corresponding Author, E-mail: youngulee@dgist.ac.kr

Figure S1. SEM images of silver fractal dendrites (AgFDs).

Figure S2. DSC data of polyacrylates with various octadecyl acrylate (OA) ratio.

Figure S3. OM images of AgFDs-PA composite films with various loading concentrations of AgFDs in the PA matrix (a) 0 wt%, (b) 0.2 wt%, (c) 0.4 wt%, (d) 0.6 wt%, (e) 1 wt%, (f) 2.5 wt%, (g) 10 wt%, and (h) 33.3 wt%.

Figure S4. Photograph of a computer controlled custom-made system with digital source meter and temperature controller for current and voltage (I-V) measurement.

Figure S5. OM images of (a) patterned ITO/PET electrode, and (b) thickness of the thermistor.

Figure S6. SEM images of spherical silver microparticles (AgMPs).

Figure S7. Mechanism diagram for PTC effect of AgFDs-PA composite film.

Figure S8. UV-Vis spectra of AgFDs-PA composite films with various loading concentrations of AgFDs on ITO/PET substrate.

Figure S9. Resistance change in temperature range from 30 °C to 34 °C.

Conducting material	Polymer matrix	T _m ^{a)}	PTC intensity ^{b)}	Ref.
Ni nanoparticle	Polyethylene	95 °C	106~107	
	Polystyrene	240 °C	10~103	1
	Poly methyl methacrylate	300 °C	<10	
	Poly vinyl acetate	-	10~10 ²	
	Polyethylene oxide	46 °C	106~107	
	Polyethylene adipate	40 °C	106~107	
Graphite	Linear low density/high density polyethylene	131.5 °C ~128.1 °C	10 ⁰ ~10 ³	2
Carbon nanotube	Polypropylene	166.4 °C	105~106	3
	High density polyethylene	135 °C	10~104	4
Ag-reduced graphene oxide	Polyvinylidene fluoride	-	10 ³ ~10 ⁴	5
Graphene nanosheet	Ultra high molecular weight polyethylene	137 °C	10 ² ~10 ³	6
Graphene nanoplatelet		-	10~106	7
AgFDs	Polyacrylate	34 °C	10⁶~10⁷	This work

 Table S1. PTC intensity values of various PTC polymer thermistors.

^{a)}Melting point; ^{b)}PTC intensity is defined as the peak resistivity divided by the initial resistivity (at room temperature).

Figure S10. Real-time resistance change in rapid temperature change ($\Delta T = 20$ °C) for a single heating and cooling cycle.

Figure S11. Photograph of a custom-made device bending system.

Figure S12. Thumb temperature of occluded (black) right hand and non-occluded (red) left hand measured by an IR camera.

Figure S13. Photographs of the thermistor attached to the human wrist.

Figure S14. Changes in real-time resistance of the thermistor attached to the human wrist through a single heating & cooling cycle.

Figure S15. Cycling stability test of the AgFDs-PA composite based thermistor in the range of 30 $^{\circ}$ C to 40 $^{\circ}$ C.

.

References

- 1. J. Jeon, H.-B.-R. Lee, and Z. Bao, Adv. Mater., 2013, 25, 850-855.
- 2. P. Zhang, and B. Wang, J. Appl. Polym. Sci., 2018, 135, 46453.
- G. Li, C. Hu, W. Zhai, S. Zhao, G. Zheng, K. Dai, C. Liu, and C. Shen, *Mater. Lett.*, 2016, 182, 314-317.
- 4. Y. Zeng, G. Lu, H. Wang, J. Du, Z. Ying, and C. Liu, Sci. Rep., 2014, 4, 6684.
- 5. L. He, and S. C. Tjong, RSC Adv., 2015, 5, 15070-15076.
- H. Pang, Y.-C. Zhang, T. Chen, B.-Q. Zeng, and Z.-M. Li, *Appl. Phys. Lett.*, 2010, 96, 251907.
- Y. Wang, J. Yang, S. Zhou, W. Zhang, and R. Chuan, J. Mater. Sci.: Mater. Electron., 2018, 29, 91-96.