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Supplementary Note 1

In the basis of three-orbitals TB model for a honeycomb lattice with two px,y orbitals

on A site and one pz orbital on B site, the Hamiltonial H(k) with a 3 × 3 matrix can be

written as
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where zyx ppp ,,,  are the orbital index,  is the on-site energy and  it ,0 is the

nearest-neighbor (NN) hopping parameter. c and c are creation and annihilation

operators. The detailed 3 × 3 matrix elements without consideration of SOC are
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where εpx, εpy, and εpz are on-site energies for px, py, and pz orbitals, respectively. Vppσ

and Vppπ are NN hopping parameters. The bulking distance h equals to the bond length

between A and B sites. Around the Γ point, the above Hamiltonian can be expended to

the first-order of k as
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Since the on-site SOC term does not induce the coupling between different spin

components, i.e., the spin-up and spin-down spaces are separated, it can be written as
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where SOC is the atomic SOC strength, and 1s represent spin-up and spin-down

components, respectively. Hence, the total spin-up Hamiltonian H(k) with

consideration of SOC is











































pppzppppyppppx

ppppypppppy

ppppxpppppx

SOChop

VVVikVVik

VVikVV

VVikVV

HkHkH

6)(
4
3)(

4
3

)(
4
3)(30

)(
4
30)(3

)()( , (5)

Supplementary Note 2

In the three-orbitals TB model, the buckling distance h (Figure 1(a)) equals to the

bond length a between A and B sites. Here, we have systematically investigated the

nontrivial bandgaps as the function of h, where, h = xa (x = 0.0-2.0), the detailed 3 × 3

matrix elements without consideration of SOC are the same as equation (2), except

that
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As displayed in Fig. S1, the bandgap rapidly increases from zero, and reaches its

maximum when h = a, then slowly decreases with h increasing. And five typical band

structures with h = 0.0, 0.1, 0.5, 1.0, and 1.5 are also shown, respectively. When h =

0.0, H13 = H23 = H23 = H32 = 0, which means that the coupling between px,y and pz

orbitals is zero. In this case, the bandgap can not be opened, as shown in Fig. S1(b).

As h represents the distance between two atoms, the chosen value can not be too

large.

Supplementary Note 3

The thermodynamic stability of Si2I/MgI2 heterostructure were performing in ab initio

molecular dynamics (AIMD) simulations at 200 K. In the simulations, we have used 4

× 4 × 1 supercell for the heterostructure, to allow the systems to be reconstructed

freely at the given temperature. Here, a canonical ensembles (NVT) was adopted for

the AIMD simulations by using the algorithm of Nosé (S. Nosé, J. Chem. Phys., 1984,

81, 511), with the time step of 2 fs. After 20 ps AIMD simulations, Si2I/MgI2

heterostructure preserve their respective structures as shown in Fig. S7, indicating

their thermodynamic stability at 200 K.
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Fig. S1 (a) The nontrivial bandgaps as the function of h. (b)-(f) The calculated band structures

with h = 0.0, 0.1, 0.5, 1.0, and 1.5, respectively. Here, the parameters are set to εpx = εpy = -1.6

eV , εpz = 0.6 eV, Vppπ = -0.1 eV,Vppσ = 0.6 eV. λSOC is 0, 0.1, and 0.3 eV for all cases. Fermi

level is set to zero.



5

Fig. S2 Ferromagnetic (a) and 120° antiferromagnetic (b) orders of freestanding Si2I in 3×3

unit cell. The green dashed lines denote that nearest three “magnetic” atoms form 120°

antiferromagnetic order.
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Fig. S3 Projected band structures of freestanding Si2I without (a) and with (b) consideration

of SOC. Here, red and green colors represent weight of Si pz and I px,y orbitals, respectively.

Obviously, a band inversion happens near Fermi level between Si pz and I px,y when SOC is

applied.
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Fig. S4 Band structures of freestanding Si2X (X = H, F-Br) without ((a)-(d)) and with ((e)-(h))

consideration of SOC, respectively.
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Fig. S5 Band structure of bulk (a) and monolayer (b) MgI2 without (black lines) and with (red

lines) SOC. The black dashed lines indicate Fermi level.
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Fig. S6 The other five high-symmetry stacking configurations of Si2I/MgI2 heterostructures in

a 1×1 unit cell.
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Fig. S7 Schematic diagram of Si2I/MgI2 heterostructures after 10 (a) and 20 (b) ps of AIMD

simulations.
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Table S1. The bandgaps of three systems (Si2I, Si2I/MgI2,Bi/Si(111)) calculated with four

typical vdW functionals.

Functional
DFT-D2 vdW-DF optPBE-vdW vdW-DF2

Eg
(eV)

Si2I 0.094 0.094 0.094 0.094
Si2I/MgI2 0.093 0.094 0.095 0.095
Bi/Si(111) 0.060 0.060 0.060 0.060
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