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Derivation of Equations 12-14 

The virial for the i-th mode is calculated by

      (S1)
𝑉𝑖 = 𝑓𝑖

1/𝑓𝑖

∫
0

𝐹𝑡𝑠(𝑧𝑐 + 𝑧(𝑡))𝑧𝑖(𝑡)𝑑𝑡

where the cantilever’s deflection is given by 

                  (S2)𝑧(𝑡) = 𝑧0 + 𝑧1(𝑡) + 𝑧2(𝑡)

For an elastic interaction and in the absence of long-range forces, the above integral is calculated 
in the time interval [ta, tb] for which zc+z(t) ≤0. By assuming that z0 and A2 are negligible with 
respect to A1, then the virial of the first mode is given by

      (S3)
𝑉1 = 𝑓1

𝑡𝑏

∫
𝑡𝑎

𝐹𝑡𝑠(𝑧𝑐 + 𝑧(𝑡))𝑧1(𝑡)𝑑𝑡

From ta to tb, the force increases from zero to its peak force value at t=t* and then it decreases to 
zero at t=tb. Then, if the contact area is kept constant during approach and retraction 

      (S4)
𝑉1 = 𝑓1

𝑡𝑏

∫
𝑡𝑎

𝐹𝑡𝑠(𝑧𝑐 + 𝑧(𝑡))𝑧1(𝑡)𝑑𝑡 = 2𝑓1

𝑡 ∗

∫
𝑡𝑎

𝐹𝑡𝑠(𝑧𝑐 + 𝑧(𝑡))𝑧1(𝑡)𝑑𝑡

The above integral can be performed in the z domain by using the following change of variables 

     (S5)𝑢 = 𝐴1cos (𝜔1𝑡 + 𝜑1)

with

     (S6)𝑑𝑢 =‒ 𝐴1𝜔1sin (𝜔1𝑡 + 𝜑1) =‒ 𝜔1 𝐴2
1 ‒ 𝑢2𝑑𝑡

then

                              (S7)
𝑉1 =

‒ 2
𝜔1

𝑓1

𝐴1

∫
𝑧𝑐

𝐹𝑡𝑠(𝑧𝑐 + 𝑢) 𝑢

𝐴2
1 ‒ 𝑢2

𝑑𝑢

The indentation can be expressed in terms of the instantaneous deflection as 

      (S8)
𝛿(𝑧) = {0,                𝑧1 < 𝑧

𝑢 ‒ 𝑧𝑐,      𝑧1 ≥ 𝑧𝑐�
for u=A1 we reach the maximum indentation (deformation)

                                         (S9) 𝛿𝑚𝑎𝑥 = 𝐴1 ‒ 𝑧𝑐
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The above definitions and the fact that the force is only non-zero when δ≠0, enable to express V1 
as

                           (S10)
𝑉1 =

1
𝜋

𝛿𝑚𝑎𝑥

∫
0

𝐹𝑡𝑠(𝛿)
𝛿 + 𝑧𝑐

𝐴2
1 ‒ (𝛿 + 𝑧𝑐)2

𝑑𝛿 

Now, we introduce the following definitions

                                                               (S11)𝐹𝑡𝑠(𝛿) = 𝑣 

   (S12)

𝑑𝐹𝑡𝑠

𝑑𝛿
𝑑𝛿 = 𝑘𝑡𝑠(𝛿)𝑑𝛿 = 𝑑𝑣

                                                                                        (S13)
𝑑𝑤 =

𝛿 + 𝑧𝑐

𝐴2
1 ‒ (𝛿 + 𝑧𝑐)2

𝑑𝛿

which implies that

                                                                      (S14)
 𝑤 =‒

(𝛿 + 𝑧𝑐 + 𝐴1)( ‒ 𝛿 ‒ 𝑧𝑐 + 𝐴1)

𝐴2
1 ‒ (𝛿 + 𝑧𝑐)2

= 𝐴2
1 ‒ (𝛿 + 𝑧𝑐)2

By applying the integration by parts relationship , V1 becomes∫𝑢𝑑𝑣 = 𝑢𝑣 ‒ ∫𝑣𝑑𝑢

    (S15)
𝑉1 =

1
𝜋

 (𝐹(𝛿) 𝐴2
1 ‒ (𝛿 + 𝑧𝑐)2)𝛿𝑚𝑎𝑥

0 ‒
1
𝜋

𝛿𝑚𝑎𝑥

∫
0

𝑘𝑡𝑠(𝛿) 𝐴2
1 ‒ (𝛿 + 𝑧𝑐)2𝑑𝛿

The first term is equal to 0 for both extremes of the integration because F(δ)=0 when δ=0, and 
  for δ=δmax 𝐴1 ‒ 𝑧𝑐, 𝐴2

1 ‒ (𝛿 + 𝑧𝑐)2 = 0

which leads to

    (S16)
𝑉1 =‒

1
𝜋

𝛿𝑚𝑎𝑥

∫
0

𝑘𝑡𝑠(𝛿) 𝐴2
1 ‒ (𝛿 + 𝑧𝑐)2𝑑𝛿

Now we can use the definition of the maximum indentation (equation S9) to replace zc in the 
above equations, 

    (S17)
𝐴2

1 ‒ (𝛿 + 𝑧𝑐)2 = 𝐴2
1 ‒ (𝛿 + 𝐴 ‒ 𝛿𝑚𝑎𝑥)2 = 𝐴1 1 ‒ (1 ‒

𝛿𝑚𝑎𝑥 ‒ 𝛿

𝐴1
)2

when the deformation is small respect to the amplitude A1,

                     (S18)
𝑥 =

𝛿𝑚𝑎𝑥 ‒ 𝛿

𝐴1
≪ 1
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we can apply series expansion

                                                                       (S19)
1 ‒ (1 ‒ 𝑥)2 ≈ 2𝑥 ‒

1
4 2𝑥3 ‒

1
32 2𝑥5… 

By keeping the first term, an approximation that is valid with the amplitudes and deformations 
used in bimodal AFM, Eq. S17 becomes 

    (S20)
𝐴1 1 ‒ (1 ‒

𝛿𝑚𝑎𝑥 ‒ 𝛿

𝐴1
)2 ≈ 2𝐴1 𝛿𝑚𝑎𝑥 ‒ 𝛿

Then equation S16 becomes 

    (S21)
𝑉1 ≈‒

1
𝜋

𝛿𝑚𝑎𝑥

∫
0

𝑘𝑡𝑠(𝛿) 2𝐴1 𝛿𝑚𝑎𝑥 ‒ 𝛿𝑑𝛿

which corresponds to equation 12 (main text).

Now we proceed to calculate virial of the second mode. From equations 4 and 7 (main text) we 
get, 

                                                               (S22)
𝑉2 =‒

𝑘2𝐴2
2Δ𝑓2

𝑓02
= (𝐴2

2 4𝜋)
1/𝑓1

∫
0

𝐹𝑡𝑠'(𝑡)𝑑𝑡

    (S23)

Δ𝑓2

𝑓02
≈‒

1
4𝜋𝑘2

 

1/𝑓1

∫
0

𝑘𝑡𝑠(𝑡)𝑑𝑡

It is more convenient to perform the integral in   domain. To that purpose we use the definitions 𝑧
given in equations S4 and S5, 

    (S24)

Δ𝑓2

𝑓02
≈

1
4𝜋𝑘2

 2

𝐴1

∫
𝑧𝑐

𝑘𝑡𝑠(𝑢)
𝑑𝑢

𝐴2
1 ‒ 𝑢2

which in terms of the indentation (δ= u-zc) 

    (S25)

Δ𝑓2

𝑓02
≈

1
2𝜋𝑘2

 

𝛿𝑚𝑎𝑥

∫
0

𝑘𝑡𝑠(𝛿)
𝑑𝛿

𝐴2
1 ‒ (𝛿 + 𝑧𝑐)2

Then equation S22 becomes 

    (S26)
𝑉2 ≈‒

𝐴2
2

2𝜋

𝛿𝑚𝑎𝑥

∫
0

𝑘𝑡𝑠(𝛿)
𝑑𝛿

𝐴2
1 ‒ (𝛿 + 𝑧𝑐)2

by using equation S20 
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    (S27)
𝑉2 ≈‒

𝐴2
2

2𝜋

𝛿𝑚𝑎𝑥

∫
0

𝑘𝑡𝑠(𝛿)
𝑑𝛿

2𝐴1 𝛿𝑚𝑎𝑥 ‒ 𝛿

This step finalizes the deduction of equation 13 (main text).

Now we proceed to derive equation 14 (main text). We start from the definition of the energy 
dissipation (equation 5) 

    (S28)
𝐸𝑑𝑖𝑠𝑖 =‒

1/𝑓𝑖

∫
0

𝐹𝑡𝑠(𝑡)𝑧̇𝑖(𝑡)𝑑𝑡

we define a dissipative force as

    (S29)𝐹𝑑𝑖𝑠 = Λ(𝑧)𝑧̇(𝑡)

where  is a dissipation function.Λ(𝑧)

by using the definition of u (equations S5 and S6),

    (S29)
𝑑𝑡 =

𝑑𝑢

‒ 𝜔1 𝐴2
1 ‒ 𝑢2

Then the energy dissipated for the first mode:

 
𝐸𝑑𝑖𝑠1 =  

𝐴1

∫
‒ 𝐴1

Λ(𝑧𝑐 + 𝑢) ( ‒ 𝜔1 𝐴2
1 ‒ 𝑢2)2 𝑑𝑢

‒ 𝜔1 𝐴2
1 ‒ 𝑢2

=

                                                                                            (S31)
‒

𝐴1

∫
‒ 𝐴1

Λ(𝑧𝑐 + 𝑢)𝜔1 𝐴2
1 ‒ 𝑢2 𝑑𝑢

by using 

   (S32)
𝐴2

1 ‒ 𝑢2 = ∫ ‒ 𝑢

𝐴2
1 ‒ 𝑢2

𝑑𝑢

and the definitions 

    (S33)
𝑣 = 𝐴2

1 ‒ 𝑢2 ;   𝑑𝑣 =
‒ 𝑢

𝐴2
1 ‒ 𝑢2

𝑑𝑢

    (S34)𝑑𝑤 = Λ(𝑧𝑐 + 𝑢)𝑑𝑢;   𝑤 = 𝑀(𝑢) = ∫𝑑𝑢 Λ(𝑧𝑐 + 𝑢)

we apply the integration by parts formula
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                             (S35)

𝐴

∫
‒ 𝐴

Λ(𝑧𝑐 + 𝑢) 𝐴2
1 ‒ 𝑢2 𝑑𝑢1 = 𝐴2

1 ‒ 𝑢2𝑀(𝑢) ‒

𝐴1

∫
‒ 𝐴1

𝑀(𝑢)
‒ 𝑢

𝐴2
1 ‒ 𝑢2

𝑑𝑢

The first term is zero, then the energy dissipated by mode 1 is 

                               (S36)
𝐸𝑑𝑖𝑠1 =‒ 𝜔1

𝐴1

∫
‒ 𝐴1

Λ(𝑧𝑐 + 𝑢) 𝐴2
1 ‒ 𝑢2

1 𝑑𝑢1 = 𝜔1

𝐴1

∫
‒ 𝐴1

𝑀(𝑢)
𝑢

𝐴2
1 ‒ 𝑢2

𝑑𝑢

, which resembles equation S10, then by analogy we deduce

                (S37)
𝐸𝑑𝑖𝑠1 = 2

𝛿𝑚𝑎𝑥

∫
0

𝑔𝑖𝑛𝑡(𝛿) 2𝐴1 𝛿𝑚𝑎𝑥 ‒ 𝛿𝑑𝛿

where  is the dissipative equivalent of  in a conservative interaction force.𝑔𝑖𝑛𝑡 𝑘𝑖𝑛𝑡

Calibration of bimodal AM-FM 

The value of the Young’s modulus given by bimodal AM-FM has been determined with a 
calibrated polystyrene sample of Young’s modulus = 2.7 GPa (Bruker Test Sample). For 
completeness we provide the viscosity coefficient, the loss tangent and the retardation time.
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Figure S1. (a) Young’s modulus, (b) viscous coefficient, (c) loss tangent and (d) retardation time 
on a PS sample of nominal elastic modulus value of 2.7 GPa. The Young’s modulus has been 
calculated considering a νs=0.34. (e) The extracted nanomechanical values are shown. The 
measurement parameters are A01 = 81 nm, A1 = 65 nm, f01 = 68.070 kHz, k1 = 2.77 N m-1, Q1 = 
208, A2 = 1.2 nm, f02 = 432.333 kHz, k2 = 142 N m-1, R = 12 nm.

E (GPa) tan ρ τ (µs) com (Pa s)

2.75 ± 0.16 0.028 ± 0.009 0.06 ± 0.02 204 ± 73

Energy dissipation map of a LDPE sample 

Figure S2. Energy dissipation map of the 1st mode on LDPE. The map was acquired 
simultaneously with the data shown in Fig. 4. 
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Influence of the humidity on the bimodal AFM data

Nanomechanical parameters extracted from two bimodal AM-FM experiments performed on a 
PS-b-PMMA sample with humid air (RH=22%) and in a dry N2 atmosphere (RH<3 %).

Table S1. PS-b-PMMA viscoelastic properties at two relative humidity.

Measurement 

condition

PS-b-PMMA block Eeff (GPa) tan ρ τ (µs) eff (Pa s)

PS 2.1 ± 0.25 0.11 ± 0.02 0.22 ± 0.03 460 ± 65

Air
PMMA 2.6 ± 0.30 0.07 ± 0.02 0.15 ± 0.03 350 ± 65

PS 2.1 ± 0.2 0.09 ± 0.03 0.19 ± 0.06 423 ± 130

N2 flow
PMMA 2.6 ± 0.2 0.03 ± 0.02 0.07 ± 0.05 200 ± 120
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