Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Highly Fluorescent Ti₃C₂ MXene Quantum Dots for Macrophage

Labeling and Cu²⁺ Ion Sensing

Qingwen Guan,^{a‡} Junfei Ma,^{a‡} Wenjing Yang,^a Rui Zhang,^a Xiaojie Zhang,^a Xiaoxiao Dong,^a Yuting Fan,^b Lulu Cai^{b*} Yi Cao,^c Yilin Zhang,^d Neng Li,^{e*} Quan Xu^{a*}

Tuble 51. The quantum yields up of the us prepared 10, 1 mgDs and other material.						
Samples	Synthetic	Wavelength	Quantum yield	Ref		
	method	(nm)	(%)			
N, P-MQDs	Hydrothermal	560	20.1	This paper		
MQD-100	Hydrothermal	420	9.9	[1]		
N-MQDs	Hydrothermal	447	18.7	[2]		
s-MQDs	Solvothermal	570	10.7	[3]		
MQDs	Intercalation	475	Not given	[4]		
Ti ₃ C ₂ QDs	Hydrothermal	450	2.67	[5]		
Ti ₃ C ₂ QDs	Hydrothermal	480	7.13	[6]		
Ti ₃ C ₂ MQDs	Hydrothermal	509	9.36	[7]		

Table S1. The quantum yields up of the as-prepared N P-MODs and other material

Table S2. The photoluminescence quantum yield (PLQY) and lifetimes of the asprepared N, P-MQDs, N-MQDs, and P-MQDs.

Samples	PLQY	Lifetime (ns)
P-MQDs	2.4%	4.99
N-MQDs	10.3%	6.02
N, P-MQDs	20.1%	8.54

Table S3. Element content of as-prepared Ti₃C₂ and N, P-MQDs, N-MQDs, and P-MQDs.

Samples	Ti2p (Atomic	C1s	O1s	N1s	P2p
	%)				
Ti ₃ C ₂	0.59	59.8	39.61	-	-
pristine					
N, P-MQDs	0.61	20.88	65.05	4.73	8.73
N-MQDs	0.88	27.66	67.95	3.5	-
P-MQDs	0.32	21.77	61.92	-	16

Tuble 5 il Element content of 13, 1 mQ25 octore und utter queneming.					
Ti2p (Atomic	C1s	O1s	N1s	P2p	Cu2p
%)					
0.61	20.88	65.05	4.73	8.73	0
1.38	10.26	62.75	2.1	1.78	21.72
1.32	13.68	17.72	3.6	0.63	63.05
	Ti2p (Atomic %) 0.61 1.38 1.32	Ti2p (Atomic C1s %) 0.61 20.88 1.38 10.26 1.32 13.68	Ti2p (Atomic C1s O1s %) 0.61 20.88 65.05 1.38 10.26 62.75 1.32 13.68 17.72	Ti2p (Atomic C1s O1s N1s %) 0.61 20.88 65.05 4.73 1.38 10.26 62.75 2.1 1.32 13.68 17.72 3.6	Ti2p (Atomic C1s O1s N1s P2p %) 0.61 20.88 65.05 4.73 8.73 1.38 10.26 62.75 2.1 1.78 1.32 13.68 17.72 3.6 0.63

Table S4. Element content of N, P-MQDs before and after quenching.

(a) (b) $\int_{\frac{1}{2}} \int_{\frac{1}{2}} \int_{\frac{1}{$

Figure S1. SEM images of as-obtained layered Ti₃C₂ MXene.

Figure S2. SEM-EDX (Energy-dispersive X-ray spectroscopy) of pristine Ti₃C₂.

Figure S3. (a-c) SEM-EDS elemental mapping images of the pristine Ti₃C₂ sheet.

Figure S4.TEM images of (a) N, P-MQDs, (b) N-MQDs, and (c) P-MQDs.

Figure S5. Diameter size distribution of (a) N, P-MQDs, (b) N-MQDs, and (c) P-MQDs.

Figure S6. Thickness distribution of (a) N, P-MQDs, (b) N-MQDs, and (c) P-MQDs.

Figure S7. AFM images of the prepared (a) N, P-MQDs, (b) N-MQDs, and (c) P-MQDs. Insets are height profiles of corresponding lines.

Figure S8. Photoluminescence spectra of (a) Photoluminescence spectra (UV light 480 nm) of N, P-MQDs, diammonium phosphate (120 °C, 12 h) and Ti_3C_2 (120 °C, 12 h, without acid treated); (b) N, P-MQDs, (c) N-MQDs, and (d) P-MQDs. Insets are photographs under UV light (365 nm).

Figure S9. Fluorescence intensity variation of the N, P-MQDs as a function of (a) pH, (b) temperature, and (c) time under 480 nm light illumination; (d) time-dependent absorption changes of the N, P-MQDs.

Figure S10. Fluorescence intensity variation of the N, P-MQDs vs. time

Figure S11. High-resolution XPS spectra (a) N1s spectrum for the N, P-MQDs and N-MQDs, and (b) P2p spectrum for the N, P-MQDs and P-MQDs.

Figure S12. High-resolution XPS spectra of (a) C1s, (b) O1s for the pristine Ti_3C_2 , N, P-MQDs, N-MQDs, and P-MQDs.

Figure S13. High-resolution XPS spectra of (a) N1s, (b) P2p for the pristine Ti_3C_2 , N, P-MQDs, N-MQDs, and P-MQDs.

Figure S14. The cellular viability. THP-1 macrophages were exposed to various concentrations of N, P-MQDs for 24 h. After exposure, the cellular viability was measured by using CCK-8 assay.

Figure S15. Flow cytometry analysis of THP-1 macrophages exposed to 25 μ g/mL N, P-MQDs for 24 h. The percentage increase of cells with green fluorescence.

Figure S16. High-resolution XPS spectra for N, P-MQDs before and after quenching process: (a) C1s, (b) O1s, (c) N1s.

Figure S17. High-resolution XPS spectra for N, P-MQDs before and after quenching process: (a) P2p, (b) Cu2p.

Figure S18. TEM images for N, P-MQDs before (a) and after (b) quenching by Cu²⁺.

Supplementary references

- Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, Y. Huang, Y. Huang, Q. Deng, J. Zhou, S. Du, Q. Huang and C. Zhi, Adv. Mater., 2017, 29, 1604847.
- [2]. Q. Xu, L. Ding, Y. Wen, W. Yang, H. Zhou, X. Chen, J. Street, A. Zhou, W.-J. Ong and N. Li, J. Mater. Chem. C, 2018, 6, 6360-6369.
- [3]. G. Xu, Y. Niu, X. Yang, Z. Jin, Y. Wang, Y. Xu and H. Niu, Adv. Opt. Mater., 2018, 1800951.
- [4]. Y. L. Qin, Z. Q. Wang, N. Y. Liu, Y. Sun, D. X. Han, Y. Liu, L. Niu and Z. H. Kang, Nanoscale, 2018, 10, 14000-14004.
- [5]. Z. Guo, X. Zhu, S. Wang, C. Lei, Y. Huang, Z. Nie and S. Yao, Nanoscale, 2018, 10, 19579-19585.
- [6]. X. Chen, X. Sun, W. Xu, G. Pan, D. Zhou, J. Zhu, H. Wang, X. Bai, B. Dong and H. Song, Nanoscale, 2018, 10, 1111-1118.
- [7]. S. Lu, L. Sui, Y. Liu, X. Yong, G. Xiao, K. Yuan, Z. Liu, B. Liu, B. Zou and B. Yang, Adv. Sci., 2019, 1801470.