Supporting Information

(Co, Mn)-doped NiSe₂- diethylenetriamine (dien) nanosheets and (Co, Mn, Sn)-doped NiSe₂ nanowires for high performance supercapacitor: compositional/morphological evolution and (Co, Mn)-induced electron transfer

Huamei Dan, Keyu Tao, Yang Hai, Li Liu and Yun Gong*

*Corresponding author: gongyun7211@cqu.edu.cn

	Co(OAc) ₂	Mn(OAc) ₂	Urea	Selenization
	(mmol)	(mmol)	(mmol)	product
Co-precursor/NF	0.5	/	2.5	Co-NiSe ₂ -dien/NF
Co-Mn-precursor-2/NF	0.33	0.17	2.5	(Co, Mn)-NiSe ₂ -dien/NF
Co-Mn-precursor-1/NF	0.25	0.25	2.5	Co-NiSe ₂ -dien/Mn(OH) ₂ /NF
Co-Mn-precursor	0.17	0.22	25	Co-NiSe ₂ -dien/Mn(OH) ₂
-0.5/NF	0.17	0.33	2.3	/MnCO ₃ /NF
Mn-precursor/NF	/	0.5	2.5	MnCO ₃ /NiSe ₂ -dien/NF
Bare Ni foam	/	/	1	NiSe ₂ -dien/NF

Table S1 The names of the samples synthesized under different conditions

(b)

S-2

(d)

(e)

Figure S1 EDS and elemental mappings (inset) of (**a**) Co-NiSe₂-dien/NF, (**b**) (Co, Mn)-NiSe₂-dien/NF, (**c**) Co-NiSe₂-dien/Mn(OH)₂/NF, (**d**) Co-NiSe₂-dien/Mn(OH)₂ /MnCO₃/NF and (**e**) MnCO₃/ NiSe₂-dien/NF.

Sample	Co -NiSe ₂ -dien/NF	(Co, Mn) - NiSe ₂ -dien /NF	Co-NiSe ₂ - dien /Mn(OH) ₂ /NF	Co-NiSe ₂ - dien /Mn(OH) ₂ /MnCO ₃ / NF	MnCO ₃ / NiSe ₂ - dien/NF	NiSe ₂ -dien/NF	(Co, Mn) -NiSe ₂ -dien /NF after cycling test
Со	3.3	1.3	9.0	1.9	/	/	2.3
Mn	/	0.5	7.0	1.0	2.6	/	0.0
Ni	18.0	13.4	37.6	41.2	22.8	27.4	25.2
Se	11.9	5.4	14.8	18.0	18.9	15.6	0.0
С	45.7	48.3	19.2	22.9	30.5	35.9	22.8
N	11.5	18.0	5.1	6.0	5.0	6.7	0.0

Table S2 The atomic percentages (at. %) for all the selenization samples

0	9.6	13.1	7.3	9.0	20.2	14.4	49.4

(b)

(c)

Figure S2 (a, b) SEM and (c) EDS images as well as elemental mappings (inset) of NiSe₂-dien/NF.

(a)

Figure S3 XRD patterns of (a) precipitations and (b) precursors grown on Ni foam.

(b)

(b)

Figure S4 SEM images of (**a**) Co-precursor/NF, (**b**) Co-precursor precipitation, (**c**) Co-Mn-precursor-2/NF and (**d**) Co-Mn-precursor-2 precipitation.

Figure S5 (a) Nitrogen adsorption-desorption isotherms and **(b)** the corresponding pore-size distribution curve of (Co, Mn)-NiSe₂-dien/NF.

	Electrode material	a	Current		
	(three-electrode cell)	Specific capacity	density	Electrolyte	Ref.
1	α-MnSe	96.76 F g ⁻¹	0.1 mA cm ⁻²	1 M Li ₂ SO ₄	1
2	Co _{0.85} Se	294 F g ⁻¹	0.5 A g ⁻¹	2 М КОН	2
3	Co _{0.85} Se@MoSe ₂	774 F g ⁻¹	1 A g ⁻¹	2 М КОН	3
4	CoSe@MoSe ₂	128.2 mAh g ⁻¹	1 A g ⁻¹	2 М КОН	4
5	(Ni _{0.33} Co _{0.67})Se ₂	827.9 F g ⁻¹	1 A g ⁻¹	3 М КОН	5
6	Co _{0.85} Se	114.6 mAh g ⁻¹	1 A g ⁻¹	2 М КОН	6
7	Ni _{0.6} Co _{0.4} Se ₂ //AC	1580 F g ⁻¹	1 A g ⁻¹	2 М КОН	7
8	Cu _{0.63} Co _{0.37} Se ₂	28.63 F g ⁻¹	1 A g ⁻¹	2 М КОН	8
9	Co _{0.85} Se	422 F g ⁻¹	1 A g ⁻¹	2 М КОН	9
10	CoSe	70.6 mAh g ⁻¹	1 A g ⁻¹	2 М КОН	10
11	Ni _{0.9} Co _{1.92} Se ₄ @MnO ₂	1021.1F g ⁻¹	2 mA cm^{-2}	3 М КОН	11
12	CoSe	544.6 F g ⁻¹	1 mA cm ⁻²	3 М КОН	12
13	MnCo-LDH@Ni(OH) ₂	2320 F g ⁻¹	3 A g ⁻¹	3 М КОН	13
14	Mn-Co-Fe HNPs	1170 F g ⁻¹	2 A g ⁻¹	6 М КОН	14
15	MnCO ₃ @MnO ₂	363 F g ⁻¹	1 A g ⁻¹	1 M Na ₂ SO ₄	15
16	Ni _{0.2} Mn _{0.8} CO ₃	583.5 F g ⁻¹	1 A g ⁻¹	3 М КОН	16
17	CuS	237 F g ⁻¹	0.5 A g ⁻¹	2 М КОН	17

Table S3 (a) The electrochemical performances of (Co, Mn)-NiSe₂-dien/NF and other electrode materials.

18	CoO/Co ₃ O ₄	451 F g ⁻¹	1 A g ⁻¹	3 М КОН	18
19	CWS/Ni	2666.6 F g ⁻¹	10 mA cm ⁻²	1 M Li ₂ SO ₄	19
20	PB@MnO2	608 F g ⁻¹	1 A g ⁻¹	1 M KNO ₃	20
21	K _{0.27} MnO ₂ ·0.6H ₂ O	144.7 F g ⁻¹	2 C	0.5 M K ₂ SO ₄	21
22	Cu ₃ SbS ₄ /Ni-5	835.24 mAh g ⁻¹	2.5 mA cm ⁻²	1 M LiOH	22
23	(Co, Mn)-NiSe ₂ -dien /NF	288.6 mAh g ⁻¹	1 A g ⁻¹	2 M KOH	This work

 Table S3(b) comparisons of (Co, Mn)-NiSe2-dien/NF//AC device with other two

 elelctrode devices reported in literatures.

	Device (two-electrode cell)	Energy density	ity Electrolyte Capacity retention		Ref.
1	α-MnSe//α-MnSe	2.08 Wh kg ⁻¹ at 25 W kg ⁻¹	1 M Li ₂ SO ₄	103.4 % (2000 cycles at 2 mA cm ⁻²)	1
2	Co _{0.85} Se//N-PCNs	21.1 Wh kg ⁻¹ at 400 W kg ⁻¹	2 М КОН	93.8 % (5000 cycles)	2
3	Co _{0.85} Se@MoSe ₂ //GNS	25.5 Wh kg ⁻¹ at 420 W kg ⁻¹	2 М КОН	88 % (5000 cycles at 10 A g ⁻¹)	3
4	CoSe@MoSe2//N-PMCN	32.6 Wh kg ⁻¹ at 415 W kg ⁻¹	2 М КОН	91.4 % (5000 cycles at 5 A g ⁻¹)	4
5	(Ni _{0.33} Co _{0.67})Se ₂ //AC	29.1 Wh kg ⁻¹ at 800 W kg ⁻¹	3 М КОН	113 % (2000 cycles at 6 A g ⁻¹)	5
6	Co _{0.85} Se//AC	22.3 Wh kg ⁻¹ at 829 W kg ⁻¹	2 М КОН	76 % (5000 cycles at 5 A g ⁻¹)	6
7	Ni _{0.6} Co _{0.4} Se ₂ //AC	44.1 Wh kg ⁻¹ at 691.3 kW kg ⁻¹	2 М КОН	89.2 % (20000 cycles at 10 A g ⁻¹)	7
8	Cu _{0.63} Co _{0.37} Se ₂ //AC	0.192 Wh kg ⁻¹ at 36.65 W kg ⁻¹	2 М КОН	96.5 % (2000 cycles at 1 A g ⁻¹)	8
9	Co _{0.85} Se//AC	17.8 Wh kg ⁻¹ at	2 М КОН	93 % (2000 cycles at	9

		3.57 kW kg ⁻¹		1A g ⁻¹)	
10	CoSe//AC	18.6 W h kg ⁻¹ at 750 W kg ⁻¹	2 M KOH	95.4 % (20000 cycles at 5 A g ⁻¹)	10
11	Ni _{0.9} Co _{1.92} Se ₄ @MnO ₂ //AC	26.29 W h kg ⁻¹ at 265 W kg ⁻¹	3 М КОН	88.39 % (5000 cycles at 20 mA cm ⁻²)	11
12	CoSe//AC	20.2 W h kg ⁻¹ at 144.1 W kg ⁻¹	3 М КОН	93.3 % (5000 cycles at 10 mA cm ⁻²)	12
13	MnCo-LDH@Ni(OH) ₂ //AC	47.9 W h kg ⁻¹ at 750.7 W kg ⁻¹	3 М КОН	90.9 % (5000 cycles at 20 A g ⁻¹)	13
14	Mn-Co-Fe HNPs//AC	11.4 W h kg ⁻¹ at 1125 W kg ⁻¹	6 М КОН	96 % (4000 cycles at 5 A g ⁻¹)	14
15	MnCO ₃ @MnO ₂ //AG	27.4 W h kg ⁻¹ at 271.7 W kg ⁻¹	1 M Na ₂ SO ₄	84.2 % (2000 cycles at 1 A g ⁻¹)	15
16	Ni _{0.2} Mn _{0.8} CO ₃ //AC	24.1 W h kg ⁻¹ at 740 W kg ⁻¹	3 М КОН	84.8 % (2000 cycles at 2 A g ⁻¹)	16
17	CuS//AC	15.1 W h kg ⁻¹ at 392.9 W kg ⁻¹	2 М КОН	88 % (4000 cycles at 1 A g ⁻¹)	17
18	CoO/Co ₃ O ₄ //AC	10.52 W h kg ⁻¹ at 140 W kg ⁻¹	3 М КОН		18
19	CWS/Ni//graphene	48.6 W h kg ⁻¹ at 321.4 W kg ⁻¹	1 M Li ₂ SO ₄	92.1% (10000 cycles)	19
20	PB@MnO2//PG	16.5 W h kg ⁻¹ at 550 W kg ⁻¹	1 M KNO3	93% (4000 cycles at 1 A g ⁻¹)	20
21	K _{0.27} MnO ₂ ·0.6H ₂ O// AC	25.3 W h kg ⁻¹ at 140 W kg ⁻¹	0.5 M K ₂ SO ₄	98% (10000 cycles at 25C)	21
22	Cu ₃ SbS ₄ /Ni-5//Cu ₂ MoS ₄ /Ni	58.15 W h kg ⁻¹ at 636.4 W kg ⁻¹	1 M LiOH	96.7% (1000 cycles at 15 mA cm ⁻²)	22
23	(Co, Mn)-NiSe ₂ -dien /NF//AC	50.94 Wh kg ⁻¹ at 447.3 W kg ⁻¹	2 M KOH	84 % (10000 cycles at 8 A g ⁻¹)	This work

Table S4 The values of the parameters in the equivalent circuits for (Co, Mn)-NiSe2-dien/NF (before and after 10000 GCD cycles), Co-NiSe2-dien/NF, NiSe2-dien/NF and

(Co,Mn)-NiSe₂-dien/NF//AC device.

Electrode	$R_s/\Omega \ cm^{-2}$	C/F cm ⁻²	$R_{ct}/\Omega \ cm^{-2}$	W/Ω cm ⁻²
(Co, Mn)-NiSe ₂ -dien/NF before 10000 GCD cycles	0.853	0.581	39.2	0.1172
(Co, Mn)-NiSe ₂ -dien/NF after 10000 GCD cycles	1.059	0.3577	86.2	0.0487
Co-NiSe ₂ -dien/NF	1.207	0.0152	527	0.0098
NiSe ₂ -dien/NF	1.843	0.0087	1376	0.0048
(Co,Mn)-NiSe ₂ -dien/NF//AC device	1.848	0.4203	108.7	0.1683

(f)

(e)

(j)

Figure S6 (**a**, **f**) The comparisons of specific capacities at (**a**) different scan rates and (**f**) different current densities; (**b**, **c**) CVs at different scan rates and (**d**, **e**) GCD curves at different current densities of (**b**, **d**) Co-NiSe₂-dien/NF and (**c**, **e**) NiSe₂-dien/NF; (**g**) Nyquist plots; CVs at 1 mV s⁻¹ of (**h**) (Co, Mn)-NiSe₂-dien/NF, (**i**) Co-NiSe₂-dien/NF and (**j**) NiSe₂-dien/NF, in which the surface capacities are highlighted in shaded regions.

Figure S7 The models for (**a**) NiSe₂, (**b**) Co-substituted NiSe₂ and (**c**) (Co, Mn)-substituted NiSe₂. Color codes: pink, Ni; yellow, Se; blue, Co; green, Mn.

(b)

(c)

Figure S8 Total DOS (TDOS) and partial DOS (PDOS) of (a) $NiSe_2$, (b) Cosubstituted $NiSe_2$ and (c) (Co, Mn)-substituted $NiSe_2$. Color codes: blue, s orbit; red, p orbit; green, d orbit.

Figure S9 (**a**) CV curves at different scan rates and (**b**) GCD curves at different current densities of activated carbon (AC) in a three-electrode cell, (**c**) The comparative CV curves of the individual AC and (Co, Mn)-NiSe₂-dien/NF at 10 mV s⁻¹, (**d**) Nyquist plot for (Co, Mn)-NiSe₂-dien/NF//AC device.

(b)

(c)

Figure S10 (**a**, **b**) SEM images and (**c**) EDS as well as the corresponding elemental mappings (**inset**) for (Co, Mn)-NiSe₂-dien/NF after 10000 GCD cycles.

Co 8.4 Mn 2.6 (Co, Mn)-NiSe ₂ /NF-Sn-6h Sn 0.8 Cl 0.1 Cl 0.1	%
	T-1 keV

(b)

25-	Se		Element	Atom%
		Se Co Mn	Ni C	43.5
20-	N		Ni	21.7
		2.5 μm	Se	14.0
≥ 15-		Sn C N O	CI N	0.0
cps/e			0	18.8
10-			Co	0.0
8	0	(Co. Mn) NiSo /NE Sn 12h	Mn	0.0
s— r		$(C0, MII) - MISE_2/MI - SII - 12II$	Sn	1.5
E			Cl	0.5
		A Se Se		
0		2 4 6 8 10 12 14	16	18 keV

Figure S11 EDS images and elemental mappings (inset) of (**a**) (Co, Mn)-NiSe₂/NF-Sn-6h and (**b**) (Co, Mn)-NiSe₂/NF-Sn-12h.

References:

- 1 S. Sahoo, P. Pazhamalai, K. Krishnamoorthy and S. J. Kim, *Electrochim. Acta*, 2018, **268**, 403-410.
- 2 H. Peng, G. Ma, K. Sun, Z. Zhang, J. Li, X. Zhou and Z. Lei, *J. Power Sources*, 2015, **297**, 351-358.
- 3 H. Peng, C. Wei, K. Wang, T. Meng, G. Ma, Z. Lei and X. Gong, *ACS Appl. Mater. Interfaces*, 2017, **9**, 17067-17075.
- 4 H. Peng, J. Zhou, K. Sun, G. Ma, Z. Zhang, E. Feng and Z. Lei, *ACS Sustain*. *Chem. Eng*, 2017, **5**, 5951-5963.
- 5 L. Quan, T. Liu, M. Yi, Q. Chen, D. Cai and H. Zhan, *Electrochim. Acta*, 2018, **281**, 109-116.
- 6 S. Wu, Q. Hu, L. Wu, J. Li, H. Peng and Q. Yang, J. Alloys Compd., 2019, **784**, 347-353.
- 7 S. Xie, J. Gou, B. Liu and C. Liu, J. Colloid Interface Sci., 2019, **540**, 306-314.
- 8 B. K. Deka, A. Hazarika, J. Kim, N. Kim, H. E. Jeong, Y. B. Park and H. W. Park, *Chem. Eng. J.*, 2019, **355**, 551-559.
- 9 X. Zhao, X. Li, Y. Zhao, Z. Su, Y. zhang and R. Wang, J. Alloys Compd., 2017, 697, 124-131.
- 10 Y. Zhu, Z. Huang, Z. Hu, L. Xi, X. Ji and Y. Liu, *Electrochim. Acta*, 2018, **269**, 30-37.
- 11 W. An, L. Liu, Y. Gao, Y. Liu and J. Liu, *RSC Adv.*, 2016, 6, 75251-75257.
- 12 T. Chen, S. Li, P. Gui, J. Wen, X. Fu and G. Fang, *Nanotechnology*, 2018, **29**, 205401.

- 13 S. Liu, S. C. Lee, U. Patil, I. Shackery, S. Kang, K. Zhang, J. H. Park, K. Y. Chung and S. Chan Jun, *J. Mater. Chem. A*, 2017, **5**, 1043-1049.
- 14 A. E. Elkholy, F. El Taib Heakal and N. K. Allam, *Electrochim. Acta*, 2019, **296**, 59-68.
- 15 H. Chen, Z. Yan, X. Y. Liu, X. L. Guo, Y. X. Zhang and Z. H. Liu, J. Power Sources, 2017, 353, 202-209.
- 16 N. Zhao, H. Fan, M. Zhang, X. Ren, C. Wang, H. Peng, H. Li, X. Jiang and X. Cao, *Ceram. Int.*, 2019, 45, 5266-5275.
- 17 J. Zhang, H. Feng, J. Yang, Q. Qin, H. Fan, C. Wei and W. Zheng, ACS Appl. Mater. Interfaces, 2015, 7, 21735-21744.
- 18 M. Pang, G. Long, S. Jiang, Y. Ji, W. Han, B. Wang, X. Liu, Y. Xi, D. Wang and F. Xu, *Chem. Eng. J.*, 2015, **280**, 377-384.
- 19 P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V. K. Mariappan and S. J. Kim, *Chem. Eng. J.*, 2019, **359**, 409-418.
- 20 A. K. Das, R. Bera, A. Maitra, S. K. Karan, S. Paria, L. Halder, S. K. Si, A. Bera and B. B. Khatua, *J. Mater. Chem. A*, 2017, **5**, 22242-22254.
- 21 Q. Qu, L. Li, S. Tian, W. Guo, Y. Wu and R. Holze, J. Power Sources, 2010, 195, 2789-2794.
- 22 V. K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S. S. Nardekar and S. J. Kim, *Nano Energy*, 2019, **57**, 307-316.