Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Crystal Phase Effect upon O₂ Activation on Gold Surfaces through Intrinsic Strain

Lixiang Zhong and Shuzhou Li*

School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

*E-mail: lisz@ntu.edu.sg

1. Computational Methods

Spin-unrestricted calculations were performed using density functional theory as implemented in the Vienna *ab initio* simulation package (VASP).¹⁻² The ion-electron interactions are treated with the projected augmented wave pseudopotentials,³ and the plane-wave basis set was cut off at 400 eV. Generalized gradient approximation with the Perdew-Burke-Ernzerhof functional was used to determine the exchange-correlation energy.⁴ The slab model was adopted to mimic the metal surfaces and the separation between two slabs was larger than 15 Å to eliminate spurious interactions. A six-layer slab with 3×3 surface unit cell was adopted when simulating the oxygen adsorption and O₂ dissociation on the Au(111) surface with different crystal phases, and a $7 \times 7 \times 1$ k-point mesh was sampled by the Monkhorst-Pack scheme.⁵ The 1×1 (111) unit cell was used when studying the layer number effect, and the corresponding k-point mesh was increased to 21×21×1. All structures were optimized by the conjugate gradient method until the residual force on each unfixed atom was less than 0.01 eV/Å, and only the lower half of the slab was fixed. The climbing image nudged elastic band method was used to find the transition states and calculate the corresponding energy barriers.⁶ The DFT-D3 method with Becke-Jonson damping was adopted to include van der Waals interactions and was only applied in the simulations of O₂ dissocications,⁷⁻⁸ which involve the adsorption of O₂ on gold surfaces. In addition, the structure models were visualized in the VESTA software.9

2. Structural Parameters

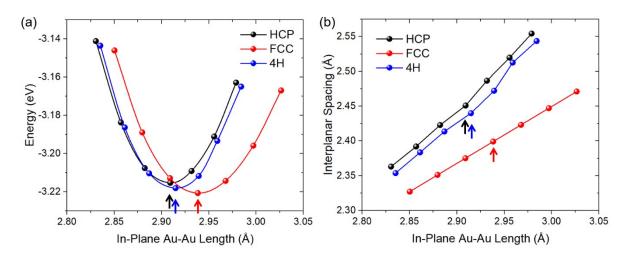


Figure S1. (a) Potential energy per atom of gold with different crystal phases under isotropic strain as a function of in-plane Au-Au length. (b) Nearly linear relationship between interplanar spacing and in-plane Au-Au length under isotropic strain.

	НСР	FCC	4H
Stacking sequence	AB	ABC	ABCB
Interplanar spacing (Å)	2.451	2.399	2.440
	2.451 ^{ref 10}	2.409 ^{ref 10}	
In-plane Au-Au length (Å)	2.909	2.938	2.915
	2.927 ^{ref 10}	2.951ref 10	

Table S1. The structural parameters of HCP, FCC, and 4H bulk gold.

Table S2. The structural parameters of HCP, FCC, and 4H free-standing 6-layer gold nanosheets.

	НСР	FCC	4 H
Stacking sequence	AB	ABC	ABCB
Interplanar spacing (Å)	2.536	2.521	2.520
In-plane Au-Au length (Å)	2.871	2.873	2.874

3. Dissociation of O_2

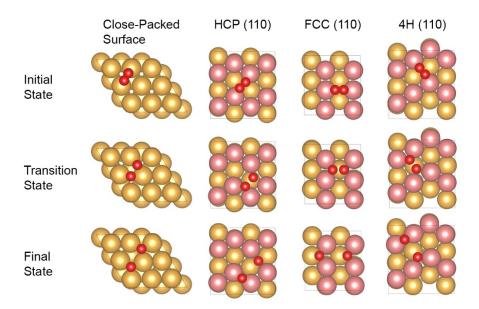


Figure S2. Dissociation processes of O_2 on close-packed and (110) gold surfaces with different crystal phases.

4. Layer Number Effect

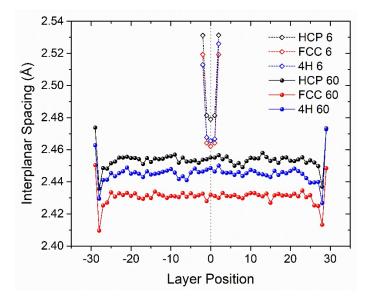


Figure S3. Distribution of interplanar spacing in 6-layer and 60-layer gold nanosheets with different crystal phases.

Reference

(1) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15-50.

(2) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B* **1996**, *54*, 11169-11186.

(3) Blochl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953-17979.

(4) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.

(5) Methfessel, M.; Paxton, A. T. High-Precision Sampling for Brillouin-Zone Integration in Metals. *Phys. Rev. B* **1989**, *40*, 3616-3621.

(6) Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. *J. Chem. Phys.* **2000**, *113*, 9901-9904.

(7) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

(8) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32*, 1456-1465.

(9) Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. *J. Appl. Crystallogr.* **2011**, *44*, 1272-1276.

(10) Wang, Y.; Curtarolo, S.; Jiang, C.; Arroyave, R.; Wang, T.; Ceder, G.; Chen, L. Q.; Liu, Z. K. Ab Initio Lattice Stability in Comparison with Calphad Lattice Stability. *Calphad* **2004**, *28*, 79-90.