Wafer-Scale and Deterministic Patterned Growth of Monolayer

MoS₂ via Vapor-Liquid-Solid Method

Shisheng Li,^{*1,2} Yung-Chang Lin,³ Xu-Ying Liu,^{1,4,5} Zehua Hu,⁶ Jing Wu,⁷ Hideaki Nakajima,³ Song Liu⁸, Toshiya Okazaki,⁹ Wei Chen,⁶ Takeo Minari,^{2,4,10} Yoshiki Sakuma,¹⁰ Kazuhito Tsukagoshi,² Kazu Suenaga,³ Takaaki Taniguchi,^{*2} and Minoru Osada^{*2,11}

1 International Center for Young Scientists (ICYS), National Institute for Materials Science, Tsukuba 305-0044, Japan

2 WPI International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science , Tsukuba 305-0044, Japan

3 Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 5, Tsukuba 305-8564, Japan

4 Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science, Tsukuba 305-0044, Japan

5 The School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

6 Centre for Advanced 2D Materials and Department of Physics, National University of Singapore, 117546, Singapore

7 Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 138634, Singapore

8 Institute of Chemical Biology and Nanomedicine (ICBN), College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

9 CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, AIST Central 5, Tsukuba 305-8564, Japan

10 Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan

11 Institute of Materials and Systems for Sustainability (iMaSS), Division of Materials Research, Nagoya University, Nagoya 464-8603, Japan

Growth conditions:

1) <u>4-inch-wafer-scale growth of monolayer VLS-MoS₂ flakes</u>: A 4-inch SiO₂/Si wafer was treated with UV-Ozone for 30 minutes to obtain hydrophilic surface. To load Na₂MoO₄, ~10 mL of 4 mg/mL Na₂MoO₄ aqueous solution was drop on the wafer first. Then, spin-coating was conducted at 5000 rpm for 60 seconds. The 4-inch SiO₂/Si wafer was cut to small pieces to fit the inner-diameter of a 2-inch quartz tube. The growth was performed in a thermal tube furnace at 750 °C for 5 minutes with 100 sccm high-purity Argon as carrier gas. The temperature ramping rate was 30 °C/min. The temperature of sulfur was kept at ~170 °C and ~ 25 mg sulfur was consumed during the growth. (Fig. S1)

2) <u>2-inch-wafer-scale growth of monolayer VLS-MoS₂ film</u>: 2-inch sapphire substrate was pretreated with UV-Ozone for 30 minutes to obtain highly hydrophilic surface. Here, Na₂MoO₄ particles was uniformly distributed on sapphire substrate by loading ~1.5 mL of 5 mg/mL Na₂MoO₄ aqueous solution. And then, spin-coating was conducted at 3000 rpm for 60 seconds. The growth condition is like the growth of VLS-MoS₂ flakes on SiO₂/Si substrates. To engineer the grain size of as-grown VLS-MoS₂ film, the supply of sulfur and growth time were modified. For large-grain VLS-MoS₂ film (>100 μ m), low concentrated sulfur and long growth time were used, ~ 80 mg sulfur was consumed in 30-minute growth. For small-grain VLS-MoS₂ film (<100 μ m), high concentrated sulfur and short growth time were required, ~ 60 mg sulfur was consumed in 10-minute growth.

3) <u>Patterned growth of monolayer VLS-MoS₂ film</u>: A photomask was used to intimately contact with a sapphire substrate first. Then vacuum ultraviolet (VUV) was employed to irradiate the sapphire substrate for 2 minutes. As a result, the originally less-hydrophobic sapphire substrate with a contact angle of ~26.3° with 5 mg/mL Na₂MoO₄ aqueous solution was patterned with an array of highly hydrophilic rectangles. The VUV-exposed sapphire substrate usually has a highly hydrophilic surface with a contact angle of ~8.5°. Then, ~0.5 mL of 5 mg/mL Na₂MoO₄ was loaded on the sapphire substrate and spin-coated with a speed of 4000 rpm for 30 seconds. A clear difference of the size and area-density of Na₂MoO₄ particles between the highly hydrophilic rectangular area and surrounding less-hydrophilic area can be observed.

The growth results indicated that high area-density of small Na_2MoO_4 particles in the hydrophilic rectangular area were facile for the growth of continuous VLS-MoS₂ film. While the large Na_2MoO_4 particles deposited on the surrounding hydrophobic area were only converted to thick MoS_2 islands. (Fig. 4)

4) <u>Patterned growth of monolayer VLS-MoS₂ flakes</u>: A layer of photoresist (AZ5214) was spin-coated on a SiO₂/Si substrate. A standard LED photolithography process was performed to prepare patterns on the SiO₂/Si substrate. Then, the SiO₂/Si substrate was treated with UV-Ozone for 30 minutes to modify the surface to hydrophilic. After spin-coating of ~0.5 mL of 5 mg/mL Na₂MoO₄ aqueous solution at 3000 rpm for 30 seconds. The patterned Na₂MoO₄ was obtained by sequential washing with dehydrate acetone at 50 °C for 30 minutes and IPA for 5 minutes. Then the SiO₂/Si substrate with patterned Na₂MoO₄ particles was blew dry with N₂. The growth condition was the same as the growth of VLS-MoS₂ flakes on SiO₂/Si substrates. (**Fig. 5**)

Transfer of VLS-MoS₂ flakes:

1) <u>For XPS</u>: To remove the adsorbed Na residuals, the as-grown VLS-MoS₂ flakes were immersed in IPA/H₂O (9/1 *vol.*) solution for 30 minutes. Then, the as-grown samples were spin-coated with a layer of PMMA. The PMMA film was peeled off from growth substrate using KOH (35 *wt%*) as etchant. The PMMA film was transferred to an Au (50 nm) coated heavily doped silicon substrate. Finally, the PMMA was removed by resining with acetone and IPA sequentially.

2) <u>For TEM observation</u>: To investigate the Na residuals in the as-grown VLS-MoS₂ flakes on SiO₂/Si substrate, the samples were firstly protected by spin-coating a layer of polycarbonate. The SiO₂ layer was therefore etched in a diluted HF solution and the polycarbonate along with the MoS₂ monolayers were peeled off from the growth substrate. The film was rinsed for several times in DI water before transferring to TEM grids. Finally, the polycarbonate film was removed in chloroform and the as-grown VLS-MoS₂ flakes left on a Quantifoil microgrids. (**Fig. S3**)

Fabrication of VLS-MoS₂ FETs:

The VLS-MoS₂ monolayers were grown on silicon substrates with 285-nm-thick SiO₂ layer. First, the substrates were spin-coated with a layer of photoresist (AZ5214). Then, a standard LED photolithography process was conducted to define the patterns of electrodes. After the deposition of Ti/Au (5 nm/50 nm) film, a lift-off process was employed to remove residual photoresist. A second photolithography and oxygen plasma etching were used to define the shape of the channels VLS-MoS₂ FETs. (**Fig. S5**)

Characterization:

1) <u>Raman and PL</u>: The micro-Raman/PL was performed using a laser confocal microscope (inVia, Renishaw). The 532-nm excitation laser was focused on the sample surface with a $100 \times$ objective lens. Then, Raman/PL signals from the MoS₂ samples were detected by an electron multiplying CCD detector (Andor) through a grating with 1800 grooves/mm for Raman and 150 grooves/mm for PL. The laser spot size was about 1 µm in diameter.

2) <u>STEM and EELS</u>: STEM images were acquired by using JEOL 2100F microscope equipped with dodecaple correctors and the cold field emission gun operating at 60 kV. The probe current was about 25-30 pA. The convergence semiangle was 35 mrad and the inner acquisition semiangle was 79 mrad. The EELS core loss spectra were taken by using Gatan low-voltage quantum spectrometer.

3) <u>Measurement of VLS-MoS₂ FETs</u>: To test the transport properties of VLS-MoS₂ FETs, the devices were loaded in a vacuum chamber with a pressure of ~10⁻³ Pa. The backgate bias (V_{gs}) was scanned forward from -20 V to 60 V and backward from 60 V to -20 V, the source-drain bias (V_{ds}) is 1 V. To measure the output performance of VLS-MoS₂ FETs, the backgate bias (V_{gs}) was scanned from 0 to 60 V with a step of 20 V. The source-drain bias (V_{ds}) was swept forward from 0 V to 2 V and backward form

2 V to 0 V with a step of 50 mV. The Y-axis was normalized to conductivity using the channel current and device dimensions.

Fig. S1. 4-inch-wafer-scale growth of monolayer VLS-MoS₂ flakes. (a) Spin-coating of Na₂MoO₄ aqueous solution on a 4-inch SiO₂/Si wafer. (b) A photo of the SiO₂/Si substrates cut with different widths (~15, 30 and 44 mm). (c) An optical image of Na₂MoO₄ particles deposited on the SiO₂/Si substrate. (d) Photos of the SiO₂/Si substrates loaded in a 2-inch quartz tube furnace as three layers. (e) A photo of the

tube furnace after VLS growth of MoS_2 . (f) A photo of the 8 pieces of SiO_2/Si substrates after VLS growth of MoS_2 . (g) A typical AFM image of a VLS- MoS_2 flake with a height of ~0.6 nm. (h, i) Typical (h) Raman and (i) PL spectra of the as-gown monolayer VLS- MoS_2 flakes.

Fig. S2 (a) An optical image and (b) corresponding fluorescence image of MoS_2 flakes on a SiO₂/Si substrate grown by powder CVD. (c) An AFM image shows the MoS_2 flake with non-uniform fluorescence is monolayer. (d) An optical image of monolayer VLS-MoS₂ flakes (corresponding to **Fig. 2i**). (e) PL spectra of monolayer MoS_2 flakes on a SiO₂/Si substrate grown by powder CVD. (f) PL spectra of monolayer VLS-MoS₂ flakes grown on a SiO₂/Si substrate. (g) PL spectra of monolayer VLS-MoS₂ flakes grown on a SiO₂/Si substrate. (g) PL spectra of monolayer VLS-MoS₂ flakes grown on a SiO₂/Si substrate.

Fig. S3. STEM images and EELS spectra of monolayer VLS-MoS₂ flakes. (a) A low-magnification STEM image of a VLS-MoS₂ flake transferred on a Quantifoil microgrid. (b) A high-magnification STEM image of a VLS-MoS₂ flake with a high crystallinity. (c) A high-magnification STEM image of a VLS-MoS₂ flake with residual nanoparticle on surface. (d) EELS spectra taking from the residual nanoparticle (red square in (c)) and the clean area (orange square in (c)), respectively. The residual nanoparticle contains Na and shows EELS $L_{2,3}$ -edge at ~35 eV.

Fig. S4. Contact angles of Na₂MoO₄ aqueous solution and as-deposited Na₂MoO₄ particles on SiO₂/Si and sapphire substrates, respectively. (a, b) Optical images showing the contact angles of 2 μL of 5 mg/mL Na₂MoO₄ aqueous solution on (a) original and (b) UV-Ozone treated sapphire substrates. (c, d) Optical images showing the contact angles of Na₂MoO₄ aqueous solution on (c) original and (d) UV-Ozone treated SiO₂/Si substrates. (e) A photo showing the dried Na₂MoO₄ marks on the four substrates corresponding to **Fig. S4a-d**. (f) An AFM image of spin-coated Na₂MoO₄ particles on a sapphire substrate. (g) A SEM and (h) an AFM image of spin coated Na₂MoO₄ particles on a SiO₂/Si substrate. Substrates in **Fig. S4b** and **S4d** were treated with UV-Ozone for 30 minutes. For **Fig. S4f-h**, 5 mg/mL Na₂MoO₄ aqueous solution was used for spin-coating at a speed of 3000 rpm for 60 seconds.

Fig. S5. VLS-MoS₂ FETs. (a) Optical images of an as-fabricated VLS-MoS₂ FET. (b) Typical transfer curve and leakage current of the VLS-MoS₂ FET shown in **Fig. 5e**.