Electronic Supplementary Information for

Identifying the Rate-determining Step of the Electrocatalytic Hydrodechlorination Reaction on Palladium Nanoparticles

Wenyang Fu^a, Song Shu^c, Junxi Li^a, Xuelin Shi^a, Xiaoshu Lv^a, Yu-Xi Huang^b, Fan

Dong^a, Guangming Jiang^{a,*}

^a Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China

^bDepartment of Civil & Environmental Engineering, Vanderbilt University, Nashville, Tennessee,

37235-1831, USA

^cCollege of Architecture and Environment, Sichuan University, Chengdu, 610065, China

*Corresponding author. Tel.: +86-23-62768316; Fax: +86-23-62768317.

E-mail address: jiangguangming@zju.edu.cn

This supplementary material is an 11-page document, which consists of 8 Figures and 1 Table.

Fig S1. The photo of our H-shaped electrochemical cell with the electrodes,

electrolyte solution and cation-exchange membrane.

Fig S2. Variation in the concentration of 2,4-DCP with electrolysis time in the initial 120 min of EHDC reactions on (a) TiN-Pd and (b) C-Pd.

Fig S3. CO stripping voltammograms on TiN-Pd and C-Pd catalysts in 0.1 M $HClO_4$ solution at a scan rate of 10 mV s⁻¹.

Fig S4. Representative TEM images of the (a) C-Pd and (b) TiN-Pd after the EHDC test.

Fig S5. Durability test for TiN-Pd by repeating the EHDC reactions under a cathode potential of -0.80 V in a N₂-saturated 50 mM Na_2SO_4 solution containing 50 mg L⁻¹ of 2,4-DCP.

Electrochemical reaction on cathode and anode

EHDC took place on cathode^[1]:

 $Pd+H_2O\rightarrow Pd-(H_2O)_{ads}$

 $Pd-(H_2O)_{ads}+e^- \rightarrow Pd-H^*+OH^-$

2,4-DCP+Pd \rightarrow Pd-(2,4-DCP)_{ads}

 $Pd-(2,4-DCP)_{ads}+Pd-H^*+e^-\rightarrow Pd-(o-CP)_{ads}+Cl^-$

 $Pd-(o-CP)_{ads}+Pd-H^*+e^- \rightarrow Pd-P_{ads}+Cl^-$

 $Pd-P_{ads} \rightarrow Pd+P$

OER (oxygen evolution reaction) occurred on anode ^[2]:

 $2H_2O \rightarrow O_2 + 4e^- + 4H^+$

References:

[1] Li, A.; Zhao, X.; Hou, Y.; Liu, H.; Wu, L.; Qu, J., The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Appl. Catal. B: Environ. **2012**, *111*, 628-635.

[2] Reier, T.; Oezaslan, M.; & Strasser, P., Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. Acs Catal. **2012**, *2(8)*, 1765-1772.

	C-Pd	TiN-Pd
K/L mg ⁻¹	0.01067	0.00373
$k_{ m r}$ / mg L ⁻¹ min ⁻¹	1.54775	4.86192

Table S1. The key parameters for TiN-Pd and C-Pd in L-H model

Fig S6. The adsorption energies of (a) 2,4-DCP, (b) P and (c) HCl on C-Pd in different adsorption configurations.

Fig S7. (a) The adsorption energy of 2,4-DCP on TiN-Pd in different adsorption configurations; (b) The adsorption energy of P on TiN-Pd in different adsorption configurations.

Fig. S8. The three-dimensional isosurfaces of charge density difference at the interface of Pd_4 and carbon layer.