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Supporting Information:

Figure S1. EDS results of (a) CdS precipitates (white area) and (b) the FeS2 precipitates (gray 
area) in Figure 2. (d)
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Figure S2. The SEM images of the Cu0.92Cd0.08FeS2 powders (a) berfore and (b) after HEBM, and 
(c) the corresponding XRD patterns.

Figure S3. (a) The TEM image of Cu0.92Cd0.08FeS2 with SAED pattern, and (b) the corresponding 
HRTEM image.



Figure S4. The BSE images of Cu0.92Cd0.08FeS2 sample prepared by quenching and annealing 
without high-energy ball milling process (a), the EDS result of b point (b) and c point (c).

Figure S5. The electron thermal conductivity (ke) of Cu0.92Cd0.08FeS2 (red circulars) and defects 
integrated Cu0.92Cd0.08FeS2 (blue squares) samples.



Figure S6. The (a) electrical conductivity (), (b) Seebeck coefficient (S), (c) power factor (PF), (d) 
electronic thermal conductivity (k), (e) lattic thermal conductivity (kl) and estimated theory kl, and (f) 
figure of merit (ZT) of the Cu0.92Cd0.08FeS2 (red circulars), defects integrated Cu0.92Cd0.08FeS2 (blue 
squares) and Cu0.92Cd0.08FeS2 sample prepared by quenching and annealing without high-energy ball 
milling process (green hexagon).



Figure S7. The (a) electrical conductivity (), (b) Seebeck coefficient (S), (c) power 
factor (PF) of cycle testing



Figure S8. The (a) electrical conductivity (), (b) Seebeck coefficient (S), (c) power factor (PF), (d) 
electronic thermal conductivity (k), and (e) figure of merit (ZT) of the Cu0.9Cd0.1FeS2 (red circulars) and 
DI-Cu0.9Cd0.1FeS2 (blue squares) samples.

Table S1. The density of all the samples

Sample Density (g/cm³)
CuFeS2 4.09

Cu0.98Cd0.02FeS2 4.05
Cu0.96Cd0.04FeS2 4.04
Cu0.94Cd0.06FeS2 4.07
Cu0.92Cd0.08FeS2 4.06
Cu0.90Cd0.1FeS2 4.02

DI-Cu0.92Cd0.08FeS2 4.10



Theoretical calculation of scattering parameter (Γ)1, 2：
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where n is the number of different crystallographic sublattice types in the lattice and ca 
is the relative degeneracy of the respective site. For CuFeS2, the parameter values can 
be obtained with: the Cu site, the Fe site, and the S site. So n=3 and c1=c2=1, c3=2.  �̿�

is the average atomic mass of compound.  and  are the average mass and radius on �̅�𝑎 �̅�𝑎

the ath sublattice, respectively.  is fractional occupation of the kth atoms on the ath 𝑓𝑘
𝑎

sublattice.  and  are the atomic mass and redius, respectively.𝑀𝑘
𝑎 𝑟𝑘

𝑎 

Theoretical calculation of Debye model3, 4:
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where , x is the phonon frequency, kB is the Boltzmann constant,  is the 𝑥 = ℏ𝜔/𝑘𝐵𝑇 ℏ

reduced Planck constant,  is the Debye temperature (263 K), v is the velocity of sound 
(2938 m s-1), and  is the phonon scattering relaxation time. The overall phonon 



scattering relaxation rate  is written as:
The overall phonon scattering relaxation rate  is written as:
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 is relaxation time of grain boundary (or precipitate) scattering:𝜏𝐺𝐵
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 is point defects scattering :𝜏𝑃𝐷
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M is the molar mass,  is the average phonon group velocity, d is the grain (or 𝜐

precipitate) size,  is the Debye temperature,  is an additional factor induced by 𝜃𝐷 𝐴𝑁

Normal process,  is the scattering parameter.Γ

Single Parabolic Band Model5:

The bands of semiconductor usually are described with parabolic simply, which 
can easily estimate the performance based on a small number of parameters and tests. 
According the tested data of carrier concentration and S, the Pisarenko lines can be 
estimated based on equations S10-S13:
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of states effective mass.
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