Supporting information

Utilization of magnetic field-driven microscopic motion for piezoelectric energy harvesting

Sanggon Kim^{1,2,4}, Gerardo Ico¹, Yaocai Bai³, Steve Yang⁴, Jung-Ho Lee⁵, Yadong Yin^{3,4}, Nosang V. Myung^{2,4*}, and Jin Nam^{1,4*}.

Addresses:

¹Department of Bioengineering, University of California, Riverside, California 92521, United States

²Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States

³Department of Chemistry, University of California, Riverside, California 92521, United States

⁴Program of Materials Science and Engineering, University of California, Riverside, California 92521, United States

⁵Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Korea

*Corresponding authors: jnam@engr.ucr.edu and myung@engr.ucr.edu

Figure S1. Reproducibility test of the piezoelectric output voltage measured from five independent P(VDF-TrFE) nanofiber mats with MNRs (a-e) and MNSs (f-j).

Figure S2. Piezoelectric output voltage measured from the magnetic $Fe_3O_4@SiO_2$ nanorodes embedded P(VDF-TrFE) nanofiber mats by (a) forward and (b) reverse connections.

Figure S3. Piezoelectric (a) open-circuit voltage and (b) short-circuit current measured from the magnetic $Fe_3O_4@SiO_2$ nanorodes embedded P(VDF-TrFE) nanofiber mats.