Supplementary Material

Monolayer SnP₃: An excellent p-type thermoelectric material[†]

Xue-Liang Zhu,^{a,b,c}Peng-Fei Liu,^{c,e}Junrong Zhang,^{c,e}Ping Zhang,^fWu-Xing Zhou,^{a,d} Guofeng Xie,*^{a,b,d}Bao-Tian Wang,*^{c,e}

^a School of Materials Science and Engineering, Hunan University of Science and Technology, 411201 Xiangtan, China E-mail: <u>gfxie@xtu.edu.cn</u>

^b School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, P. R. China

^c Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China E-mail: <u>wangbt@ihep.ac.cn</u>

^d Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, 411201 Xiangtan, China

^e Dongguan Neutron Science Center, Dongguan 523803, China

^f Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Selection of K-mesh

The difference between the last two phonon q-grids was less than 5%, which indicated the convergence of the shengBTE calculation. From the figure S1, we can see that the lattice thermal conductivity gradually converges as the k mesh increases. The lattice thermal conductivity along Zigzag direction is about 5.41 W/mK with the $33 \times 33 \times 1$ k-mesh, which is very close to 5.43 W/mK with the $35 \times 35 \times 1$ k-mesh. Therefore, based on the test of k-mesh, we use the $35 \times 35 \times 1$ k-mesh for our calculations.

Figure S1 The lattice thermal conductivity as a function of k-mesh at 300 K. **The Lorenz number**

To more accurate estimate the TE performance, the calculated Lorenz numbers are

presented in Fig. S2. Based on the Seebeck coefficients, the Lorenz number can be calculated by $L = 1.5 + \exp \left[-\frac{|S|}{116}\right]$. The values of Lorenz numbers are 2.19, 2.18, and $2.18 \times 10^{-8} \text{ W}\Omega\text{K}^{-2}$ along armchair direction at 300, 500 and 700 K, while the corresponding Lorenz numbers are 2.22, 2.21, and $2.20 \times 10^{-8} \text{ W}\Omega\text{K}^{-2}$ along armchair direction, respectively.

Figure S2 Lorenz number as a function of the Fermi level along armchair and zigzag directions.

The thermal stability

Based on the calculation of AIMD, one can see that the SnP_3 can remain relatively stability with slight disrupted at 700 K.

Figure S3 Variation of the free energy in the AIMD simulations at 700 K over the time scale of 10 ps.

Table S1. Crystal structure details

Compounds	Space Group	Lattice Parameters (Å)	Atom Positions (POSCAR)
SnP ₃	<i>R</i> 3 <i>m1</i> (No. 164)	a = b = 7.37; c=20	SnP3-PBE+vdw-DF2 1.00000000 7.377063634 0.00000000 0.00000000 -3.688531870 6.388724510 0.00000000 0.00000000 0.00000000 20.0000000 P Sn 6 2 Direct 0.830957732 0.169042253 0.504903795 0.830957732 0.661915465 0.504903795 0.338084535 0.169042282 0.504903795 0.502375641 0.497624419 0.471137866 0.502375581 0.004751192 0.471137866 0.995248838 0.497624389 0.471137866 0.333333343 0.6666666687 0.559637671 0.00000000 0.00000000 0.416403990