Supplementary information for

Strong-coupled Hybrid Structure of Carbon Nanotube and MoS₂ Monolayer with Ultrafast Interfacial Charge Transfer

Can Liu, Hao Hong, Qinghe Wang, Ping Liu, Yonggang Zuo, Jing Liang, Yang Cheng, Xu Zhou, Jinhuan Wang, Yun Zhao, Jie Xiong, Bin Xiang, Jin Zhang and Kaihui Liu

The supplementary information includes: Supplementary Fig. 1-4

Supplementary Fig. 1. (a) Atomic force microscope (AFM) image of nanotube-multilayer MoS_2 hybrids with dirty interface. **(b)** AFM cross-sectional profile along the green line indicated in (a) shows that the height of MoS_2 along nanotube exceeds 15 nm, and confirms the multi-layer MoS_2 structure.

Supplementary Fig. 2. (a) Scanning electron microscope (SEM) image and (b) the corresponding optical image of a nanotube- MoS_2 monolayer hybrid structure with clean interface. Nanotube outline cannot be seen in the optical image, but it shows a uniform MoS_2 monolayer contrast on and off nanotube.

Supplementary Fig. 3. Schematic diagram of two possible stacking geometries in nanotube-MoS₂ hybrids. (a) MoS_2 climbing over nanotube geometry. Height and width illustration of the same nanotube hybridized with MoS_2 monolayer (top panel) and on bare substrate (bottom panel). (b) Nanotube sitting on MoS_2 geometry. Situations for the same nanotube on MoS_2 (top panel) and on bare substrate (bottom panel) are identical.

Supplementary Fig. 4. (a-b) SEM images of a nanotube on 300 nm SiO₂/Si substrate before (a) and after (b) soaking in water. (c-d) Optical images of MoS_2 samples on 300 nm SiO₂/Si substrate before (c) and after (d) soaking in water. Pure MoS_2 can be easily washed out by water immersion but nanotube cannot.