WILEY-VCH

Supporting Information

Hybrid Plasmonic Gold-Nanorod-Platinum Short-Wave Infrared Photodetectors with Fast Response

Hengyang Xiang, Zhelu Hu, Laurent Billot, Lionel Aigouy[#], Zhuoying Chen^{*}

I. Evolution of the photoresponse characteristics of the Au-NRs/Pt device as a function of the Pt microwire length and width.

We fabricated and characterized various Pt microwires with different widths and lengths and we studied the impact of them on the time-dependent photoresponse characteristics of Au-NRs/Pt devices. Indeed, the size of the microwire is supposed to strongly influence the heat dissipation in similar structures.¹ We first fabricated a series of microwires with a fixed length (1500 μ m) but a variable width (from 200 μ m to 2 μ m) (Figure S2a). After that, we fabricated and characterized much shorter devices (width = 2 μ m) where we varied the length from 150 μ m to 10 μ m (Figure S2b). The response time of such Au-NRs/Pt devices upon the laser illumination is summarized in Table S1.

Figure S1. Summary of the response time of a series of Au-NRs/Pt devices with different lengths and widths.

Au-NRs/Pt device (large size) Length = 1500 μm, different widths			Au-NRs/Pt device (small size) Width = 2 μm, different lengths		
Width	Rise time	Decay time	Length	Rise time	Decay time
[µm]	[s]	[s]	[µm]	[µs]	[µs]
2	0.65	0.95	10	97	131
10	1.12	1.96	30	172	226
20	2.28	3.23	50	282	358
200	3.63	4.54	150	470	632

Table S1. Summary of the response time from a series of Au–NRs/Pt devices.

II. Photoresponsivity in terms of R/P (Ω /W) and the corresponding (Δ I)/P (mA/W) under a DC bias of 1V (P = laser power)

Figure S2. The photoresponsivity (in terms of R/P (Ω /W), P = laser power) and the corresponding (Δ I)/P (mA/W) under a DC bias of 1V (P = laser power) of the Au-NRs/Pt device and the control device at different laser powers. The dash lines represent the linear fit of the data.

III. The wavelength dependence of the change of resistance (ΔR) of an Au-NRs/Pt device

Figure S3. The wavelength dependence of the change of resistance (ΔR) of an Au-NRs/Pt device (width = 2 µm, length = 1500 µm). Experiment was performed under a monochromatic illumination with an intensity ranging from 0.026 µW/µm² at 900 nm to 0.008 µW/µm² at 1800 nm.

IV. Photoresponse as a function of frequency from 200 Hz to 150 kHz for 20- μ m and 30- μ m devices.

Figure S4. Evolution of the photoresponse as a function of laser modulation frequency from 200 Hz to 150 kHz for (a) the 20-um control and 20-um Au-NRs/Pt device and (b) the 30-um control and 30-um Au-NRs/Pt device.

V. Normalized voltage drop for different frequencies

Figure S5. The normalized voltage drop for different frequencies measured on the Au-NRs/Pt device shown in Figure 4 of the main text allowing the comparison on its spatial distribution.

Reference:

1 K. J. Kim, J. C. Lee, S. B. Choe and K. H. Shin, *Appl. Phys. Lett.*, 2008, **92**, 192509.