Supporting Information

Uniform copper-cobalt phosphides embedded in N-doped carbon framework as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries

Hang Zhang,^{a,c,d} Zhao Yang,^{a,c,d} Xuemin Wang,^{a,c,d} Sihao Yan,^{a,c,d} Tianyou Zhou,^b Cui Zhang,^{*,a,c,d}

Shane G. Telfer, *, b and Shuangxi Liu*, a,c,d

- a. Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China. *E-mail: zhangcui@nankai.edu.cn; sliu@nankai.edu.cn
- b. Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand. *E-mail: S.Telfer@massey.ac.nz
- c. National Institute of Advanced Materials, Nankai University, Tianjin 300350, PR China.
- d. Tianjin Collaborative Innovation Center for Chemistry & Chemical Engineering, Tianjin 300072, PR China

Fig. S1 The photographs of the (a) ZIF-67, (b) ZIF-67@K-TA, (c) ZIF-67@Cu-TA, (d) CuCo-NC-700 and (e) CuCoP-NC-700. (f) XRD patterns of the ZIF-67, ZIF-67@K-TA and ZIF-67@Cu-TA.

Fig. S2 Raman spectra of CuCoP-NC-X.

Fig. S3 SEM and TEM images of (a, b) CuCoP-NC-600 and (c, d) CuCoP-NC-800.

Fig. S4 Survey XPS spectrum of CuCoP-NC-700.

Fig. S5 XPS spectra of CuCoP-NC-700 and CoP-NC-700 for (a) C 1s, (b) Co $2p_{3/2}$ and (c) P 2p.

Fig. S6 LSV curves of NC-700, Co-NC-700, CoP-NC-700, CuCo-NC-700 and CuCoP-NC-700 at a scan rate of 10 mV s⁻¹ and a rotating speed of 1600 rpm in O_2 saturated (a) 0.1 M KOH solution and (b) 0.5 M H₂SO₄ solution towards ORR. (c) LSV curves of NC-700, Co-NC-700, CoP-NC-700, CuCo-NC-700 and CuCoP-NC-700 at a scan rate of 10 mV s⁻¹ in 1 M KOH solution towards OER.

Fig. S7 LSV curves of (a) CuCoP-NC-600 and (b) CuCoP-NC-800 under different rpms ranging from 400 to 2025 rpm in O₂ saturated 0.1 M KOH solution and K-L plots of CuCoP-NC-600 and CuCoP-NC-800 at various potentials (inset).

Fig. S8 RRDE voltammograms and amperometric responses were measured with a rotating speed of 1600 rpm and in O_2 saturated (a) 0.1 M KOH solution and (b) 0.5 M H₂SO₄ solution at a scan rate of 10 mV s⁻¹ of CuCoP-NC-X.

Fig. S9 LSV curves of CuCoP-NC-700 before and after 3000 cycles tests in O_2 saturated (a) 0.1 M KOH solution and (b) 0.5 M H₂SO₄ solution towards ORR durability evaluation.

Fig. S10 LSV curves of (a) CuCoP-NC-600 and (b) CuCoP-NC-800 under different rpms ranging from 400 to 2025 rpm in O_2 saturated 0.5 M H₂SO₄ solution and K-L plots of CuCoP-NC-600 and CuCoP-NC-800 at various potentials (inset).

Fig. S11 (a) XRD patterns, XPS spectra for (b) Co $2p_{3/2}$, (c) Cu $2p_{3/2}$, and (d) P 2p of CuCoP-NC-700 before and after OER durability measurement. (e) SEM image, (f) TEM image and (g) elemental mapping images of CuCoP-NC-700 after OER durability measurement.

Fig. S12 XPS spectra for (a) Co $2p_{3/2}$ and (b) P 2p of CuCoP-NC-700 before and after chargedischarge cycles measurements of the Zn-air battery. (c) SEM image and (d) TEM image of CuCoP-NC-700 after charge-discharge cycles measurements of the Zn-air battery.

Sample	Co contents (mg L ⁻¹)	Cu contents (mg L ⁻¹)	Atom ratios of Co/Cu
CuCoP-NC-600	0.3586	0.0960	3.74/1
CuCoP-NC-700	0.5337	0.1467	3.64/1
CuCoP-NC-800	0.3670	0.1031	3.56/1

 Table S1 ICP data and the atom ratios of Co/Cu of CuCoP-NC-X.

Comula	-	Relative co	ontents (%)	Contents ratios		
Sample	Co(III)	Co(II)	Cu(I)	Cu(II)	Co(III)/Co(II)	Cu(I)/Cu(II)
CuCoP-NC-600	9.5	24.1	16.6	47.8	0.39/1	0.35/1
CuCoP-NC-700	24.9	32.5	29.1	45.2	0.77/1	0.64/1
CuCoP-NC-800	21.7	34.0	41.4	40.7	0.64/1	1.02/1

Table S2 The relative contents and ratios of Co and Cu species in CuCoP-NC-X by XPS spectra of Co $2p_{3/2}$ and Cu $2p_{3/2}$.

1			
Sample	Pyridinic N	Pyrrolic N	Graphitic N
CuCoP-NC-600	21.3	25.5	53.2
CuCoP-NC-700	35.7	18.2	46.1
CuCoP-NC-800	25.9	19.6	54.5

Table S3 The relative contents (%) of pyridinic N, pyrrolic N and graphitic N in CuCoP-NC-X byXPS spectra of N1s.

Materials	Electrolyte	Onset potential (V vs. RHE)	Half-wave potential (V vs. RHE)	References
CuCoP-NC-700	0.1 M KOH	0.978	0.872	This work
CuCoP-NC-700	0.5 M H ₂ SO ₄	0.801	0.670	This work
CoOP@bio-C	0.1 M KOH	0.91	0.81	J. Mater. Chem. A 2018, 3, 546
Co-BNCBNTs-900	0.1 M KOH	0.93	0.82	J. Mater. Chem. A 2018, 6, 24071
CuCo@NC	0.1 M KOH	0.96	0.884	Adv. Energy Mater. 2018 , 7, 170019
Cu ₃ P@NPPC-650	0.1 M KOH	/	0.78	Adv. Mater. 2017, 29, 1703711
Fe/Co-N/S-Cs	0.1 M KOH	/	0.832	Appl. Catal B-Environ 2019, 241, 95
N-NC@G-900	0.1 M KOH	1.0	0.85	Angew. Chem. Int. Ed. 2018, 130,
				16749
N-NC@G-900	0.5 M H.SO.	0.80	0.65	Angew. Chem. Int. Ed. 2018, 130,
11-110(000-700	0.5 1/1 112004	0.00	0.05	16749
CoP-DC	0.1 M KOH	/	0.81	Adv. Energy Mater. 2018, 8, 1703623

Table	S4	The	ORR	electrocatalytic	performance	of	non-precious	metal	materials	in	the	recent
literatu	res.											

Materials	Electrolyte	Overpotential at 10 mA cm ⁻² (mV)	References		
CuCoP-NC-700	1 M KOH	338	This work		
Fe ₁ Co ₁ -P/C	1 M KOH	362	Small methods 2018 , 353,		
			1800214		
15% PANI/ZIF-67	0.1 M		Carbon 2018 132 580		
	КОН	550	Curron 2010 , 152, 500		
		240	J. Mater. Chem. A 2018, 6,		
Cu@CuO-C	ТМКОП	540	19176		
	0.1 M	200	Adv. Funct. Mater. 2017, 27,		
NGO/N17S6	КОН	380	1700451		
	0.1 M	410	Adv Mater. 2017, 11,		
NC@Co-NGC DSNC	КОН	410	1700874		
	0.1 M	400	Angew. Chem. Int. Ed. 2017,		
MnCo ₂ O ₄	КОН	400	27, 6834		
Mn ₃ Co ₇ -		274	Energy Environ. Sci .2017,		
ГМКОН Co ₂ Mn ₃ O ₈ @CNTs/CNFs-1000		374	10, 321		
		a /a	Phys. Chem. Chem. Phys.		
CoP ₃ CPs	і М КОН	343	2017 , 19, 2104		

 Table S5 The OER electrocatalytic performance of non-precious metal materials in the recent literatures.

Materials	Open- circuit voltage (V)	Power density (mW cm ⁻²)	Durability@ J (mA cm ⁻²)	References	
			Cycle time		
CuCoP-NC-700	1.51	116.5	over 80h@10	This work	
	1.5	1(0	Cycle number	ACS Appl. Energy Mater. 2019, 2,	
$Mn_{0.9}Fe_{2.1}C/NC$	1.5	160	over 1000@5	1747	
Co N@NC m	1 49	08.6	Cycle number	Carbon 2010 151 10	
	1.49	98.0	over 200@10	Curbon 2019, 151, 10	
Co-NiO	1 446	93	Cycle time	Appl. Catal B-Environ 2019, 250,	
00-1110	1.40	75	over 100h@2	71	
Co-POC	/	78.0	Cycle time	Adv Mater 2019 31 1900592	
	,	,0.0	over 25h@2	1147. hlutor. 201 2, 51, 1900072	
Co@SNHC	1.48	105.8	Cycle time	J. Mater. Chem. A 2019 . 7. 14291	
			over 70h@5		
Ag-MnO ₂	/	273.2	Cycle number	Chemical Engineering Journal	
0 -			over 3200@10	2019 , 366, 631	
Cu-Fe-N-C	1.48	92	/	Adv. Funct. Mater. 2018, 28,	
			1802596		
Cu ₃ P@NPPC-650	1.46	110.8	Cycle time	<i>Adv. Mater.</i> 2017 , 29, 1703711	
Cu31 (G1V11 C-050 1.40 110			over 35h@5		