Supporting Information

A labyrinth-like network electrode design for lithium-sulfur

batteries

Wenwen Tang,^{a,b} Youquan Zhang,^{a,b} Wei Zhong,^{a,b} Muhammad Kashif Aslam,^{a,b}

Bingshu Guo,^{a,b} Shu-Juan Bao,^{a,b,*} Maowen Xu^{a,b,*}

^aKey Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute of Materials and Energy, Southwest University, Chongqing 400715, PR China.

^bChongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, P.R. China.

* Corresponding author:

E-mail: baoshj@swu.edu.cn; xumaowen@swu.edu.cn.

Catalog:

Exp	erimental Section3
1.	Synthesis of the coordination polymers spheres (CPs) precursor
2.	Synthesis of the multi-shelled NiO-Co $_3O_4$ hollow spheres
3.	Synthesis of the multi-shelled NiO-Co ₃ O ₄ @S hollow spheres
4.	Visualized adsorption experiment4
5.	Materials Characterization4
6.	Electrochemical Measurements5
Figu	re S1. a) Schematic synthesis of multi-shelled NiO-Co ₃ O ₄ @S spheres6
Figu	re S2. (a)TGA analysis of the multi-shelled NiO-Co ₃ O ₄ @S spheres (b) pure sulfur
in N	$_2$ at a heating rate of 10 °C min ⁻¹ 7
Figu	re S3. (a,b) FESEM and (c) TEM images and (d) XRD pattern of CPs precursor8
Figu	re S4. HRTEM image of NiO-Co ₃ O ₄ 9
Figu	Ire S5. FESEM image of (a) NiO and (b) Co ₃ O ₄ 10
Figu	re S6. TGA of (a) NiO@S and (b) Co ₃ O ₄ @S in N ₂ at a heating rate of 10 °C min ⁻
1	
Figu	re S7. XRD pattern of (a) NiO@S and (b) Co ₃ O ₄ @S composite 12
Figu	Ire S8. Cycling performance of the (a) NiO@S and (b) Co ₃ O ₄ @S at 1 C 13
Figu	re S9. (a) The cycling performance (b) rate performance and (c) discharge-charge
curv	ves of pure NiO-Co ₃ O ₄ within the voltage window of 1.7-2.8V14
Figu	are S10. (a, c) N_2 adsorption-desorption isotherms and (b, d) pore-size
dist	ributions of the NiO-Co ₃ O ₄ and NiO-Co ₃ O ₄ @S composite15

Experimental Section

1.Synthesis of the coordination polymers spheres (CPs) precursor:

All chemicals were purchased from pharmaceutical companies and can be used without any treatment.

In a typical experiment, 34.9 mg Nickel (II) nitrate hexahydrate, 34.9 mg Cobalt (II) nitrate hexahydrate and 39.8 mg of isophthalic acid (H₂IPA) were dispersed into a mixture of 15 ml DMF and 15 ml acetone solvent, followed by sonication for 10 min to form a clear solution. The solution was poured into a Teflon-lined stainless-steel autoclave and held at 150 °C for 10 h. Finally, the dark brown powder was obtained, washed three times with ethanol and dried in an oven at 60 °C for 12h.

2. Synthesis of the multi-shelled NiO-Co₃O₄ hollow spheres:

Then, the original products were placed in a muffle furnace and heated at 450 °C for 30 minutes with a temperature increase rate of 3 °C min⁻¹.

3. Synthesis of the multi-shelled NiO-Co₃O₄@S hollow spheres:

The weight ratio of multi-shelled NiO-Co₃O₄ hollow spheres to sulfur was set to

1:2. The mixtures were heated at 155 °C in an oven for 12 h.

4. Visualized adsorption experiment:

 Li_2S_4 was synthesized by mixing sulfur and lithium sulfide (Li_2S) together in a molar ratio of 2.75:1 in a mixture of 1,2-dimethoxyethane (DME) and 1, 3dioxolane(DOL) (v/v=1:1) and stirred vigorously until all sulfur content was fully dissolved. The same weight (10 mg) of NiO-Co₃O₄ and CB were added respectively to the as-prepared Li_2S_4 solutions, and stood for 24 h. The sediment of the adsorbing agent was collected after standing for further 48 h. All solutions were prepared in a relatively sealed environment which filled Ar.

5. Materials Characterization.

The microstructure and internal structure of the material were characterized by field emission scanning electron microscopy (FESEM, JSM-7800F) and transition electron microscopy (TEM, JEM-2100), respectively. XPS data was presented on an ESCALAB 250Xi electronic spectrometer. X-ray diffraction (XRD) patterns were investigated with an X-ray diffractometer (Maxima-X XRD-7000) and Cu Kα radiation. The sulfur content of the sample was examined by a thermogravimetric analyzer (TGA, Q50). The BET specific surface area and pore size distribution were performed by Quadrasorb evo 2QDS-MP-30 (Quantachrome Instruments, USA). Furthermore, ultraviolet visible light spectrums were obtained on a Shimadzu ultraviole-2550 spectrophotometer.

6.Electrochemical Measurements

NiO-Co₃O₄@S, conductive carbon black, and polyvinylidene fluoride (PVDF) were mixed in a weight ratio of 70:20:10, and an appropriate amount of n-methy1-2-pyrrolidone (NMP) was added to make slurry and grind uniformly, and then coated on Al foil using doctor blade.

The standard cell mass loading was $0.8-1.2 \text{ mg/cm}^2$. 2032 coin type cells consisted of lithium foil as the anode and NiO-Co₃O₄@S as a cathode using 2400-Celgard as a separator.

The coin type batteries were assembled in an Ar filled glove box. The electrolyte was 1 M lithium bis-trifluoromethanesulfonimide and 1,2-dimethoxyethane/ 1,3-

dioxolane solution (v/v=1:1) with 1 wt % of LiNO₃. Cyclic voltammogram test proceeded on an Arbin instrument with a voltage range of 1.7-2.8 V and a sweep rate of 0.1 mV s⁻¹. Electrochemical charge/discharge was carried out by a Land Instruments testing system (Wuhan Kingnuo Electronic Co., China) between 1.7 V and 2.8 V (vs. Li/Li⁺). The current density was on the basis of the mass of sulfur (1 C = 1675 mA h g⁻¹).

Figure S1. a) Schematic synthesis of multi-shelled NiO-Co₃O₄@S spheres.

Figure S2. (a)TGA analysis of (a) the multi-shelled NiO-Co $_3O_4@S$ spheres (b) pure sulfur in N₂ at a heating rate of 10 °C min⁻¹

Figure S3. (a,b) FESEM and (c) TEM images and (d) XRD pattern of CPs precursor.

Figure S4. HRTEM image of NiO-Co₃O₄.

Figure S5. FESEM image of (a) Co_3O_4 and (b) NiO.

Figure S6. TGA of (a) NiO@S and (b) $Co_3O_4@S$ composite in N₂ at a heating rate of 10 °C min⁻¹.

Figure S7. XRD pattern of (a) NiO@S and (b) Co₃O₄@S composite.

Figure S8. Cycling performance of the (a) NiO@S and (b) $Co_3O_4@S$ composite at 1 C.

Figure S9. (a) The cycling performance and (b) rate performance and (c)dischargecharge curves of pure NiO-Co₃O₄ within the voltage window of 1.7-2.8 V.

Figure S10. (a, c) N_2 adsorption-desorption isotherms and (b, d) pore-size distributions of the NiO-Co₃O₄ and NiO-Co₃O₄@S composite

Samples	Initial capacity (mAh g ⁻¹)	Cycle number	Decay rate (per cycle)
$\mathrm{Co}_3\mathrm{O}_4\mathrm{HC}@\mathrm{S}^{[1]}$	730 at 0.5 C	550	0.067%
NiO HC@S ^[1]	620 at 0.5 C	550	0.12%
Co ₃ O ₄ CC@S ^[2]	1231 at 0.5 C	200	0.14%
NiO/RGO-Sn@S ^[3]	1058 at 0.1 C	150	0.12%
NiO-Co ₃ O ₄ @S	897 at 1 C	200	0.1 %

Table S1 The comparisons of cathode materials for Li-S batteries

[1] F. Ma, J. Liang , T. Wang , X. Chen, Y. Fan, B. Hultman, H. Xie, J. Han, G. Wu and Q. Li, Nanoscale, 2018, 10, 5634.

[2] Chang, Z., Dou, H., Ding, B., Wang, J., Wang, Y., Hao, X., & MacFarlane, D. R.Journal of Materials Chemistry A, 2017, 5(1), 250–257.

[3] C. Li, S. Dong, D. guo, Z. Zhang, M. Wang, L. Yin, Electrochimica Acta, 2017, 251, 43–50.