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Fig. S1 (a) Schematic illustration of FeCo-PBA NPs with SOD- and CAT-like activities. (b) and 

(c) Schematic representation of the experimental procedure on the biological ability of 

FeCo-PBA NPs, as well as FeCo-PBA NPs applied for yeast fermentation.



Fig. S2 Schematic illustration of APCP stress, including reactive oxygen and nitrogen species 

(RONS), ions, electrons, electric field and UV light, which may induce some oxidative stress 

to S. cerevisiae cells.



Fig. S3 UV-vis measurement of PBA-NPs at a concentration of 100 μg/mL in media.
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Fig. S4 Cell viability of S. cerevisiae under different concentrations of PBA NPs ranging from 

0-800 μg/mL.
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Fig. S5 Intracellular ROS level in S. cerevisiae under different concentrations of PBA NPs. 
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Fig. S6 Cell growth of S. cerevisiae under different concentrations of PBA NPs. 
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Fig. S7 Effect of APCP exposure on the cell viability of S. cerevisiae as a function of plasma 

exposure time. 

Fig. S8 Representative SEM images of yeast cells showing untreated (a) and 1-minute (b) 

and 10-min (c) plasma-treated yeast cells.
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Fig. S9 Confocal microscopy 3D images of PBA NPs uptaked by S. cerevisiae cells. After 

different types of treatments, these cells are stained by DAPI (blue) and CellROX (yellow) 

and fixed at room temperature. The z-stacking is scanned by Spinning Disc Confocal 

Microscope Nikon.


