Supporting Information

Prussian Blue Analogue Nanoenzymes Mitigate Oxidative Stress and Boost Bio-Fermentation

Renwu Zhou,^{#,*,a,b,c} Peiyu Wang,^{#,a,b} Yanru Guo,^{#,d} Xiaofeng Dai,^e Shaoqing Xiao,^f Zhi Fang,^{*,g} Robert Speight,^a Erik W. Thompson,^{a,b} Patrick J. Cullen^c and Kostya (Ken) Ostrikov^{a,b}

^a Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia.

^b Translational Research Institute, Brisbane, QLD 4000, Australia

^c School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia

^d Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

^e Wuxi School of Medicine, Jiangnan University, 214122, China

^f Engineering Research Center of IoT Technology Applications (Ministry of CEducation), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122 China

^g College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 210009, China.

[#]Renwu Zhou, Peiyu Wang and Yanru Guo contributed equally to this work.

*Corresponding author

Email: zhourenwu2015@163.com

Fermentation with FeCo-PBA NPs

Fig. S1 (a) Schematic illustration of FeCo-PBA NPs with SOD- and CAT-like activities. (b) and (c) Schematic representation of the experimental procedure on the biological ability of FeCo-PBA NPs, as well as FeCo-PBA NPs applied for yeast fermentation.

Fig. S2 Schematic illustration of APCP stress, including reactive oxygen and nitrogen species (RONS), ions, electrons, electric field and UV light, which may induce some oxidative stress to *S. cerevisiae* cells.

Fig. S3 UV-vis measurement of PBA-NPs at a concentration of 100 μ g/mL in media.

Fig. S4 Cell viability of *S. cerevisiae* under different concentrations of PBA NPs ranging from $0-800 \ \mu g/mL$.

Fig. S5 Intracellular ROS level in S. cerevisiae under different concentrations of PBA NPs.

Fig. S6 Cell growth of S. cerevisiae under different concentrations of PBA NPs.

Fig. S7 Effect of APCP exposure on the cell viability of *S. cerevisiae* as a function of plasma exposure time.

Fig. S8 Representative SEM images of yeast cells showing untreated (a) and 1-minute (b) and 10-min (c) plasma-treated yeast cells.

Fig. S9 Confocal microscopy 3D images of PBA NPs uptaked by *S. cerevisiae* cells. After different types of treatments, these cells are stained by DAPI (blue) and CellROX (yellow) and fixed at room temperature. The z-stacking is scanned by Spinning Disc Confocal Microscope Nikon.