Electronic Supplementary information (ESI)

Electrohydrodynamic 3D Printing of Layer-specifically Oriented,

Multiscale Conductive Scaffolds for Cardiac Tissue Engineering

Qi Lei,^{1,2} Jiangkang He*^{1,2} and Dichen Li^{1,2}

1 State key laboratory for manufacturing systems engineering, Xi'an Jiaotong University, Xi'an 710049, China

2 Rapid manufacturing research center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710049,

China

E-mail: jiankanghe@mail.xjtu.edu.cn

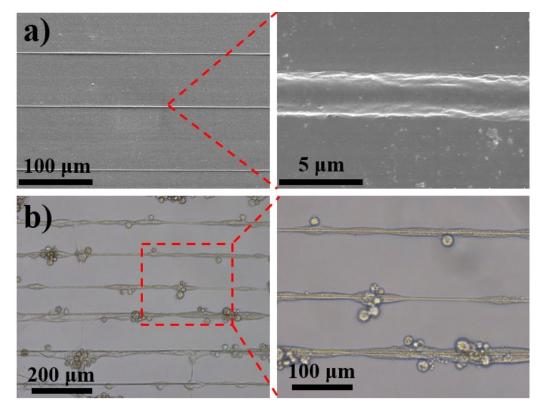
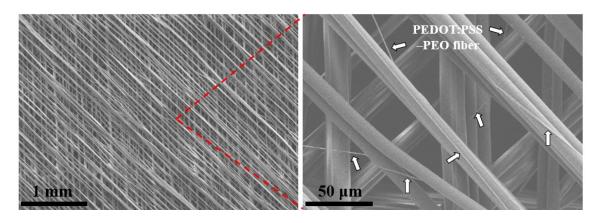



Fig. S1 The EHD-printed PCL fibers with a diameter of about 2.5 μ m a) and their effect on the attachment of H9C2 cells b).

Fig. S2 Stability of the EHD-printed multiscale conductive scaffolds when immersed in water for 5 days.

Supplementary Movie Captions

- Movie S1. Primary cardiomyocytes cultured on microfibrous PCL scaffold for 4 days.
- Movie S2. Primary cardiomyocytes cultured on multiscale conductive scaffold for 4 days.
- Movie S3. Primary cardiomyocytes cultured on microfibrous PCL scaffold for 8 days.
- Movie S4. Primary cardiomyocytes cultured on multiscale conductive scaffold for 8 days.