Electronic Supplementary Information

Ultrafine CoO nanoparticles as an efficient cocatalyst for enhanced photocatalytic hydrogen evolution

Jiayu Chu,^a Guoji Sun,^b Xijiang Han,*^a Xin Chen,^c Jiajun Wang,^a Wen Hu,^d Iradwikanari Waluyo,^d Adrian Hunt,^d Yunchen Du,^a Bo Song,*^e and Ping Xu*^a

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

^b State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen 518055, China.

^c School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.

^d National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA.

^e Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001, China.

*Corresponding authors. E-mail: pxu@hit.edu.cn (P.X.); hanxijiang@hit.edu.cn (X.H.); songbo@hit.edu.cn (B.S.).

Tel: +86-(451)-86418750; fax: +86-(451)-86413702.

Fig. S1. XRD pattern of the CdS/Co(OH)₂ nanocomposites. The diffraction peaks can be well indexed to the tandard hexagonal CdS phase (JCPDS No.41-1049). Diffraction peaks of Co(OH)₂ are not detected due to its amorphous feature.

Fig. S2. Raman spectra of CdS, CdS/Co(OH)₂ nanocomposites and CdS/CoO-1h heterostructures. The characteristic peaks at 296 and 598 cm⁻¹ in the Raman spectra are identified as the CdS,¹ where the Raman bands at 453 and 515 cm⁻¹ can be ascribed to Co(OH)₂, indicating the presence of Co(OH)₂.² While, the peaks at 485, 530 and 690 cm⁻¹ are in good agreement with the CoO,^{3, 4} which further proves that the CdS/CoO heterostructures is prepared successfully.

Fig. S3. SEM image of the as-prepared CdS nanorods.

Fig. S4. SEM images and corresponding TEM images of the prepared (a, e) CdS/Co(OH)₂-0.25 h, (b, f) CdS/Co(OH)₂-1 h, (c, g) CdS/Co(OH)₂-3 h and (d, h) CdS/Co(OH)₂-6 h. It is clearly seen that with prolonged reaction time period, more amorphous Co(OH)₂ nanosheets can be formed on the CdS nanorods.

Fig. S5. TEM image of CdS/Co(OH)₂-1h nanocomposites, which shows the highly crystallized CdS nanorod is wrapped by amorphous $Co(OH)_2$.

Fig. S6. SEM images of the prepared (a) CdS/CoO-0.25 h, (b) CdS/CoO-1 h, (c) CdS/CoO-3 h and (d) CdS/CoO-6 h.

Fig. S7. SEM image of CdS/ZIF-67 mixture prepared with the molar ratio of Co^{2+} ions to 2MIM at ~1:7.

Fig. S8. SEM image of a critical structure for CdS/ZIF-67 mixture and CdS/Co(OH)₂ nanocomposites prepared with the molar ratio of Co²⁺ ions to 2MIM at ~1:1.4.

Fig. S9. SEM image of CdS/Co(OH)₂ nanocomposites (the order of addition is Co(NO₃)₂· $6H_2O$ first, and then 2MIM).

Fig. S10. SEM image of CdS/Co(OH)₂ nanocomposites prepare in the anhydrous system, which actually shows that no Co(OH)₂ is formed.

Fig. S11. SEM images of CdS/Co(OH)₂ nanocomposites obtained by adding (a) 0.2 and (b) 0.6 mL of water into the anhydrous system, respectively.

Fig. S12. SEM image of CdS/Co(OH) $_2$ nanocomposites when the reaction solvent is only water.

Fig. S13. SEM images of (a) TiO_2 nanobelts, (b) $TiO_2/Co(OH)_2$ nanocomposites, (c) Cu_2O nanoparticles and (d) $Cu_2O/Co(OH)_2$ nanocomposites.

Fig. S14. Survey XPS spectrum of CdS/CoO-1h heterostructures, which shows the existence of S, Cd, O, and Co elements.

Fig. S15. XPS spectra of Cd 3d for CdS nanorods and CdS/CoO-1h heterostructures, which shows shifts to lower binding energies for the CdS/CoO-1h heterostructures and reveals that the electron density of CdS is increased with the decoration of CoO nanoparticles.

Fig. S16. Comparison of UV-vis absorption spectra of the prepared CdS/CoO-*x*. (*x*=0.25 h, 1 h, 3 h and 6 h)

Fig. S18. Comparison of PL spectra of the prepared CdS/CoO-x. (x=0.25 h, 1 h, 3 h and 6 h)

Time (h) Fig. S19. Photocatalytic hydrogen evolution activities of CdS, CdS/Pt and the CdS/CoO-1h heterostructures.

Fig. S20. The corresponding apparent quantum yield (AQY) of the CdS/CoO-1h heterostructures.

Fig. S21. (a) SEM and (b) TEM images of the used CdS/CoO-1h heterostructures, which show no obvious structure collapse during the photocatalytic hydrogen evolution process.

Fig. S22. XRD patterns of the CdS/CoO-1h heterostructures before and after hydrogen evolution test.

Fig. S23. XPS spectra of the used CdS/CoO-1h heterostructures: (a) Cd 3d, (b) S 2p, (c) Co 2p and (d) O 1s. From the S 2p and Co 2p spectra, Co-S bonding features can still be clearly seen, ensuring the stable photocatalytic performance.

Fig. S24. Optimized geometry of H adsorbed structures of (a) CoO, (b) CdS and (c) CdS/CoO with CoO clusters on CdS (100) interface.

Fig. S25. (a) SEM image, (b) ultraviolet–visible diffuse reflectance spectra, (c) optical bandgap and (d) Mott-Schottky plot of commercial CoO nanoparticles.

Table S1 The molar ratio of Co to Cd in CdS/CoO-*x* heterostructures determined by XPS and ICP.

Samples	XPS	ICP
CdS/CoO-0.25 h	0.18	0.29
CdS/CoO-1 h	0.73	0.62
CdS/CoO-3 h	1.45	1.33
CdS/CoO-6 h	2.21	2.29

Table S2 Parameters obtained from time-resolved PL decay curves according to a double-exponential decay.

Samples	τ ₁ (ns)	τ ₂ (ns)	A ₁ (%)	A ₂ (%)	lifetime (ns)
CdS	1.28	6.18	39.86	60.14	4.22
CdS/CoO-1 h	1.44	7.89	26.65	73.35	6.17

Table S3 A brief survey of CdS and CoO hydrogen evolution photocatalysts reported inliterature.

Catalyst	H_2 production rate (µmol g ⁻¹ h ⁻¹)	Light source (nm)	Cocatalyst	Sacrifical reagent	Ref
CdS/CoO _x	~3500	350 W Xe lamp (λ ≥ 420)		Na_2SO_3/Na_2S	5
g-C ₃ N ₄ /CoO	~650	300 W Xe lamp (λ ≥ 400)	3 w% Pt	triethanolam ine	6
NiS/CdS	~1512	300 W Xe lamp (λ ≥ 400)		lactic acid and lignin	7
CdS/Ni	~4300	300 W Xe lamp (λ ≥ 420)		Na_2SO_3/Na_2S	8
CdS/CdIn ₂ S ₄	~830	300 W Xe lamp (λ ≥ 420)		Na_2SO_3/Na_2S	8
CdS/WO ₃	~2900	500 W Xe lamp (λ ≥ 400)	3 w% Pt	lactic acid	9
Au-CdS	~600	300 W Xe lamp (λ ≥ 420)		Na_2SO_3/Na_2S	10
CdS/WO ₃	~2900	500 W Xe lamp (λ ≥ 400)	3 w% Pt	lactic acid	11
Cd/CdS	~2570	300 W Xe lamp (λ ≥ 410)		Na_2SO_3/Na_2S	12
NiS/carbon dots/CdS	~1450	350 W Xe lamp (λ ≥ 420)		Na_2SO_3/Na_2S	13
CdS/Zn _x Co _{3-x} O ₄	~4000	300 W Xe lamp (λ ≥ 420)		lactic acid	14
CdS/CoO	~6450	300 W Xe lamp (λ ≥ 420)		lactic acid	This work

Reference

- 1. B. Ma, H. Xu, K. Lin, J. Li, H. Zhan, W. Liu and C. Li, *ChemSusChem*, 2016, **9**, 820-824.
- 2. L. Yang, B. Zhang, W. Ma, Y. Du, X. Han and P. Xu, *Mater. Chem. Front.*, 2018, **2**, 1523-1528.
- 3. D. Gallant, M. Pezolet and S. Simard, J. Phys. Chem.: B, 2006, **110**, 6871-6880.
- 4. W. Shi, F. Guo, H. Wang, S. Guo, H. Li, Y. Zhou, C. Zhu, Y. Liu, H. Huang, B. Mao, Y. Liu and Z. Kang, *ACS Appl. Mater. Interfaces*, 2017, **9**, 20585-20593.
- 5. Y. Liu, S. Ding, Y. Shi, X. Liu, Z. Wu, Q. Jiang, T. Zhou, N. Liu and J. Hu, *Appl. Catal. B-Environ.*, 2018, **234**, 109-116.
- 6. Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie and B. D. Fahlman, *ACS Appl. Mater. Interfaces*, 2017, **9**, 12427-12435.
- 7. Y. Zhang, Z. Peng, S. Guan and X. Fu, *Appl. Catal. B-Environ.*, 2018, **224**, 1000-1008.
- 8. G. Zhao, Y. Sun, W. Zhou, X. Wang, K. Chang, G. Liu, H. Liu, T. Kako and J. Ye, *Adv. Mater.*, 2017, **29**, 1703258.
- 9. R. Li, H. Han, F. Zhang, D. Wang and C. Li, *Energy Environ. Sci.*, 2014, **7**, 1369-1376.
- 10. P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li and T.-Y. Ma, *Small*, 2016, **12**, 6735-6744.
- 11. L. J. Zhang, S. Li, B. K. Liu, D. J. Wang and T. F. Xie, ACS Catal., 2014, 4, 3724-3729.
- 12. B. Wang, S. He, W. Feng, L. Zhang, X. Huang, K. Wang, S. Zhang and P. Liu, *Appl. Catal. B-Environ.*, 2018, **236**, 233-239.
- 13. R.-B. Wei, Z.-L. Huang, G.-H. Gu, Z. Wang, L. Zeng, Y. Chen and Z.-Q. Liu, *Appl. Catal. B-Environ.*, 2018, **231**, 101-107.
- 14. F. Guo, W. Shi, C. Zhu, H. Li and Z. Kang, *Appl. Catal. B-Environ.*, 2018, **226**, 412-420.