Orbital hybridization induced band offset phenomena in Ni_xCd_{1-x}O

thin films

Arkaprava Das^a*, Deobrat Singh^b, C. P. Saini^a, Rajeev Ahuja^b, Anumeet Kaur^c, Sergei Aliukov^d

^aInter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067, India ^bDepartment of Physics and Astronomy, Condensed Matter Theory Group, Uppsala University, Sweden ^cDepartment of Physics, Guru Nanak Dev University, Amritsar, India ^dSouth Ural State University, Chelyabinsk, Russia *Authors for correspondence:* *<u>arkapravadas222@gmail.com</u>

Sample	20 Position	FWHM	2θ	Effective	Compositional		
name	of (111)	of (111)	Position	reduced	percentage		
	peak	peak	of (220)	mass	from RBS		
	(degree)		peak	(atomic	measurements		
			(degree)	weight)			
					Cd%	0%	Ni%
4Cd	33.06	0.42	55.42	14.00	49.8	49.2	0
3% Ni	33.04	0.60	55.43	13.98	49	49	1.9
5% Ni	33.10	0.63	55.44	13.96	46.6	49.9	3.4
10% Ni	33.13	0.88	55.51	13.92	44.3	50	5.9
20% Ni	33.24	0.87	55.66	13.82	36.5	52.9	10.6
40% Ni	33.34	1.39	56.04	13.60	24.1	51.9	24.1
80% Ni	n.a.	n.a.	n.a.	13.00	5.1	57.7	37.2
100% Ni	n.a.	n.a.	n.a.	12.57	0	58.1	41.9

Table (S1): Calculated and obtained numerical values of different parameters

n.a. = Not Applicable

Table (S2): Carrier concentration value with increasing Ni doping percentage for $Ni_xCd_{1-x}O$ thin films

Sample	Carrier		
name	concentration		
	(/cc)		
4Cd	-8.400E+19		
3% Ni	-6.587E+19		
5% Ni	-5.487E+19		
10% Ni	-2.196E+19		
20% Ni	-1.887E+19		
40% Ni	N.A.		

Reference: Arkaprava Das *et al.*, Electronic excitation induced anomalous band gap enhancement in $Ni_xCd_{1-x}O$ thin films; Vacuum 146 (2017) 287-296

sample	Peak position (eV)	area	fwhm
4Cd (Cd 3d)			
CdO	403.5	58900	1.46
CdO ₂	404.4	22589	1.11
4Cd (O 1s)			
Cd(OH) ₂ /CdCO ₃	530.5	10978	1.64
CdO	527.9	4704	0.91
CdO ₂	528.8	2709	1.29
5% Ni (Cd 3d)			
CdO	403.5	58307	1.45
CdO ₂	404.4	22352	1.09
5% Ni (O 1s)			
Cd(OH) ₂ /CdCO ₃	530.5	10838	1.64
CdO	527.9	4600	0.91
CdO ₂	528.8	2689	1.29
5% Ni (Ni 2p)			
Ni ⁰	851.5	197	0.8
Ni ²⁺	853.6	1259	3.1
Satellite	859.9	1143	5.8
Satellite	871.9	2198	13.9
10% Ni (Cd 3d)			
CdO	403.4	53205	1.15
CdO ₂	404.3	31243	1.37
10% Ni (O 1s)			
$Cd(OH)_2/CdCO_3$	530.6	7728	1.74
CdO	528.1	8263	0.93
CdO ₂	528.9	1982	0.94
10% Ni (Ni 2p)			
Ni ⁰	851.6	2771	1.09
Ni ²⁺	853.6	5492	2.9
Satellite	859.7	7844	7.3
Satellite	871.1	5605	6.1
Satellite	878.5	3302	6.2
40% Ni (Cd 3d)			
CdO	403.6	15848	1.24
CdO ₂	404.5	10064	1.23
40% Ni (O 1s)			

Table (S3): Fitting parameters for O 1s, Ni 2p and Cd 3d XPS spectra

Cd(OH) ₂ /CdCO ₃	530.5	7646	1.86	
CdO	528.4	4173	1.09	
CdO ₂	528.8	1958	0.84	
40% Ni (Ni 2p)				
Ni ⁰	851.8	9828	0.9	
Ni ²⁺	852.8	19043	2.9	
Ni ³⁺	855.3	5381	2.4	
Satellite	859.4	19027	6.6	
Satellite	872.0	19131	9	
Satellite	879.6	4444	5	
100% Ni (O 1s)				
NiO	529.7	12248	1.14	
Ni(OH) ₂	531.3	7300	1.92	
100% Ni (Ni 2p)				
Ni ⁰	852.5	12716	0.9	
Ni ²⁺	854	33000	2.8	
Ni ³⁺	856.4	13694	2.6	
Satellite	860.5	37560	6.8	
Satellite	873.3	33647	9.4	
Satellite	880.8	8343	4.6	