Electronic Supplementary Information

Preparation of $(Zn_{1+x}Ge)(N_2O_x)$ nanoparticles with enhanced NO_x decomposition activity under visible light irradiation by nitridation of Zn₂GeO₄ nanoparticles designed precisely

Jingwen Wang, Yusuke Asakura,* Shu Yin

Institute of Multidisciplinary Research for Advanced Materials

Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

E-mail: asa@tohoku.ac.jp

Fig. S1 XRD pattern of $(Zn_{1+x}Ge)(N_2O_x)$ synthesized by nitridation of a mixture containing ZnO and GeO₂ (ZnGeNO_bulk) (insets: (a) appearance and (b) TEM image of ZnGeNO_bulk).

Fig. S2 UV/Vis diffuse reflectance spectra of $Zn_2GeO_4_0.15_4$ and ZnGeNO_bulk (inset: plots of $(F(R\infty)hv)^2$ versus (hv) for obtaining the band gaps of above samples.

The band gap energy (E_g) of each sample was estimated based on the theory of optical absorption with following equation (1) proposed by Tauc, Davis, and Mott:

$$(\alpha hv)^{1/n} = A(hv - E_g) \tag{1}$$

where A, h, v and E_g are a proportional constant, the Plank constant, the frequency of vibration(1/ λ) and the band gap, respectively. The value of the exponent n is either

1/2 for a direct allowed transition or 2 for an indirect allowed transition. Since both $(Zn_{1+x}Ge)(N_2O_x)$ and Zn_2GeO_4 exhibit direct allowed transitions, and n = 1/2 is used for these samples. $F(R\infty)$ is proportional to the value of the absorption coefficient α , therefore the α in the Tauc equation is substituted by $F(R\infty)$ with Kubelka-Munk function for estimation of the optical absorption edge energy. So, the above relational expression becomes:

$$(F(R\infty)hv)^2 = A(hv - E_g)$$
⁽²⁾

Thus, the curve that plots the value of $(hv - (F(R\infty)hv)^2)$ on the horizontal axis hv and vertical axis $(F(R\infty)hv)^2$ is drawn. By the extrapolation of the straight portion of the plot of $(F(R\infty)hv)^2$ versus (hv) to the $F(R\infty) = 0$ point, the E_g values of the prepared samples can be estimated. The band gaps of $Zn_2GeO_4_0.15_4$ and $ZnGeNO_bulk$ are estimated to be 4.8 eV and 2.8 eV, respectively.

Fig. S3 High magnification TEM image of ZnGeNO_4_4 sample.

Sample	Precursor	Volume of	Specific surface	
(ZnGeNO_X_1) ^a	$(Zn_2GeO_4_A_B)^b$	TEA (mL)	area (m²/g)	
ZnGeNO_0_1	$Zn_2GeO_4_0.15_0$	0	20.1	
ZnGeNO_2_1	Zn ₂ GeO ₄ _0.15_2	2	35.5	
ZnGeNO_4_1	Zn ₂ GeO ₄ _0.15_4	4	39.7	
ZnGeNO_6_1	Zn ₂ GeO ₄ _0.15_6	6	29.4	
ZnGeNO 8 1	Zn ₂ GeO ₄ 0.15 8	8	25.7	

Table S1. The abbreviated names of $(Zn_{1+x}Ge)(N_2O_x)$ samples nitrided for 1 h and the corresponding precursors synthesized with different volume of TEA.

^a ZnGeON_X_1: X is the volume of TEA used in the preparation of Zn_2GeO_4 precursors during solvothermal reaction; 1: 1 h nitridation; ^b Zn_2GeO_4_A_B: A is the molar concentration of Zn(NO₃)₂·6H₂O and Na₂GeO₃; B is the volume of TEA (mL).

Fig. S4 XRD patterns of $(Zn_{1+x}Ge)(N_2O_x)$ samples nitrided for 1 h with different TEA volume: (a) ZnGeNO_0_1, (b) ZnGeNO_2_1, (c) ZnGeNO_4_1, (c) ZnGeNO_6_1 and (d) ZnGeNO_8_1.

Fig. S5 UV/Vis diffuse reflectance spectra of ZnGeON_X_1 (X: 0, 2, 4, 6 or 8 mL of TEA used in the preparation of Zn_2GeO_4 precursors during solvothermal reaction; 1: 1 h nitridation).

Fig. S6 Conversion ratios of photocatalytic NO_x decomposition activity under irradiation above 510, 400 and 290 nm using different photocatalysts: (a) ZnGeNO_0_1, (b) ZnGeNO_2_1, (c) ZnGeNO_4_1, (d) ZnGeNO_6_1 and (e) ZnGeNO_8_1.

Fig. S7 TEM images of $(Zn_{1+x}Ge)(N_2O_x)$ samples synthesized by nitridation for 1 h of Zn_2GeO_4 synthesized under a presence of different volumes of TEA (0, 2, 4, 6 and 8 mL): (a) ZnGeNO_0_1, (b) ZnGeNO_2_1, (c) ZnGeNO_4_1, (d) ZnGeNO_6_1 and (e) ZnGeNO_8_1.

The photocatalytic NO_x decomposition activity of $(Zn_{1+x}Ge)(N_2O_x)$ obtained by nitridation of different precursors for 1 h are shown in Fig. S6 (referred as ZnGeNO_X_1: X means the volume of TEA (mL) used in solvothermal reaction for the synthesis of Zn₂GeO₄; 1 means nitridation of 1 h). The precursors are synthesized with different TEA volume under same hydrothermal conditions (100 °C, 12 h). The photocatalytic activity increased at first and decreased subsequently with increase of TEA additive due to the alteration of particle sizes (Fig. S7). As shown in Fig. 9 and Fig. S6, ZnGeNO_4_1 possessed the best performance on photocatalytic NO_x decomposition activity among all samples. These results indicate that the amount of TEA is critical for morphology control as well as the enhancement of photocatalytic NO_x decomposition activity.

Fig. S8 (a) The three cycles of deNO_x ability of ZnGeNO_4_1 and (b) XRD patterns of ZnGeNO_4_1 sample before and after photocatalytic NO_x decomposition test.

Fig. S9 The magnified UV-vis diffuse reflectance absorption spectra of $(Zn_{1+x}Ge)(N_2O_x)$ samples with different nitridation time.

In the photocatalytic test, the wavelength of Hg lamp was cut by filters, and the samples were irradiated under a range of wavelength. Therefore, the calculated apparent quantum efficiencies are photon conversion between a range of wavelength. In this research, the apparent quantum efficiency (AQE) under irradiation of various light wavelength was calculated according to the following equation according to our previous repor¹:

$$AQE(\%) = \frac{F_{NO} \cdot \alpha_{\lambda}}{P_{\lambda} \cdot S} \times 100\%$$

 F_{NO} : the flow quantity of NO molecules in the reaction gas ((1 ppm, 200 ml/min, $1.488\times 10^{-4}\,\mu mol\;s^{-1});$

 α_{λ} : the photocatalytic NO_x decomposition ability;

 P_{λ} : the light intensity on the surface of the sample (µmol m⁻² s⁻¹) and the different light intensity are shown in 2.5 section.

S: the surface area of the samples (20 mm \times 16 mm) (m²);

Table. S2 The AQE (%) of samples prepared by different conditions in various wavelength ranges.

Sample	AQE (%)			
	290-400 nm	400-510 nm	>510 nm	
ZnGeNO_4_1	0.49	0.04	0.05	
ZnGeNO_4_4	0.69	0.04	0.02	
ZnGeNO_4_8	0.74	0.05	0.004	
ZnGeNO_4_12	0.74	0.03	0.007	
ZnGeNO_0_1	0.38	0.04	0.02	
ZnGeNO_2_1	0.36	0.05	0.04	
ZnGeNO_6_1	0.36	0.03	0.04	
ZnGeNO_8_1	0.51	0.05	0.02	
ZnGeNO_bulk	0.71	0.04	0.005	

Reference

 S. Yin, B. Liu, P. Zhang, T. Morikawa, K.-i. Yamanaka and T. Sato, *J. Phys. Chem. C*, 2008, **112**, 12425-12431.