Electronic Supplementary Information

Synergy of sp-N and sp²-N Codoping Endows Graphdiyne with Comparable Oxygen Reduction Reaction Performance to Pt

Baotao Kang,^{a, *} Si Wu,^a Jiapeng Ma,^a Hongqi Ai^a and Jin Yong Lee^{a,b,*}

^a School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong

250022, P. R. China

E-mail: chm_kangbt@ujn.edu.cn

^b Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, R. Korea

E-mail: jinylee@skku.edu

Table of contents

- 1. Detailed energy information of ORR on NGDY.
- 2. Detailed values of *ZPE* and *TS* for every intermediate.
- 3. Illustration of structural breakings of some NGDY during ORR process.
- 4. Illustration of several double-N¹ doped NGDY and their η^{ORR} values.
- 5. Illustration of O₂ dissociation upon second H addition.
- 6. $-\eta^{\text{ORR}}$ as a function of *Q*.

^{*} Corresponding authors: <u>chm_kangbt@ujn.edu.cn</u> (B. Kang), <u>jinylee@skku.edu</u> (J. Y. Lee).

System	Position	Q	η^{ORR}	ΔG_0	$\Delta G_{\rm OOH}$	ΔG_{OH}
	0.01		(\mathbf{V})	(eV)	(eV)	(eV)
Pristine GDY	βC^{1}	0.071	1.204	2.753	4.894	1.54/
	αC^{1}	0.014	0.949	2.108	4.039	0.515
βN ¹ -GDY		0.100	1./43	0.234	3.021	-0.313
	pC ¹	0.113	0.550	1.399	4.246	0.918
		0.063	0.515	1.4/1	4.205	0.750
αN ¹ -GDY	pC ¹	0.17	0.951	0.714	2.343	-0.131
		0.130	0.831	2.242	3./13	0.379
N ² -GDY		0.004	1.140	2.243	4.830	1.409
		0.104	0.909	2.130	4.039	1.340
	pC ¹	0.083	0.721	2.390	4.704	1.437
		0.073	0.721	1.203	4.122	0.094
		0.051	0.820	1.918	4.310	0.644
m-N ² N ²		0.001	0.019	2.021	4.047	1 2 9 1
		0.022	1.044	2.021	4.010	1.301
	pC ¹	0.085	0.890	2.490	4.734	1.393
		0.028	0.889	1.827	4.379	0.704
		0.074	0.747	1.277	4.128	0.794
p-N ² N ²		0.092	1.033	1.985	4.725	1.557
_	pC ¹	0.083	0.017	2.399	4.841	1.333
		0.022	1 992	0.222	4.007	0.652
N120N1		0.161	1.003	-0.232	2.825	-0.033
IN ² pIN ⁴	pC^{1}	0.101	1.000	0.900	3.965	0.750
oN²βN¹		0.133	1.001	0.309	2.006	0.139
		0.139	0.481	-0.099	2.900	-0.097
	pc	0.113	0.461	0.063	3 000	0.610
mN ² βN ¹	αC^1	0.055	1 760	-0.036	2 998	-0.530
		0.134	0.695	-0.030	<i>2.778</i>	0.071
	$\frac{\rho c}{\alpha C^{1'}}$	0.060	0.698	1.300	3 927	0.571
	αC^1	0.162	1 589	0.222	3.102	-0.359
$pN^2\beta N^1$		0.102	0.579	1.662	4 269	0.901
	$\frac{\rho c}{\alpha C^{1'}}$	0.050	0.865	1.002	4 207	0.873
mN ² mN ² βN ¹	αC^1	0.139	1 784	-0.088	3.058	-0 554
	BC ¹	0.110	0.754	1 446	4 180	0.971
	$\frac{\rho e}{\alpha C^{1'}}$	0.061	0.891	1.110	4 090	0.881
oN ² oN ² βN ¹	αC^1	0.139	1 590	-0.083	2 978	-0.360
	$\beta C^{1'}$	0.118	0.519	1 546	4 087	0.500
	$\alpha C^{1'}$	0.044	1 1 56	0 704	3 910	0.630
oN ² pN ² βN ¹	αC^1	0.142	1.444	0.160	3.174	-0.214
	BC ¹	0.118	0.589	1.616	4.223	0.975
	$\alpha C^{1'}$	0.048	0.999	1.002	4.175	0.771
oN ² mN ² βN ¹	αC^1	0.134	1.765	-0.167	3.047	-0.535
	$\beta C^{1'}$	0.114	0.502	1.524	4.153	0.796
	$\alpha C^{1'}$	0.054	0.909	0.977	4.031	0.656

 Table S1. Detailed energy information of ORR on NGDY.

Species	<i>E</i> (eV)	ZPE (eV)	TS (eV)
H ₂	-6.764	0.27	0.41
H ₂ O	-14.219	0.56	0.67
*0	-	0.142	0.03
*OH	-	0.441	0.05
*ООН	-	0.514	0.12

Table S2. Detailed values of ZPE and TS for every intermediate.

The gas phase values were from Ref. S1, while the values for the adsorbed species were taken from DFT calculations. Gas phase H_2O at 0.035 bar was used as the reference state because at this pressure gas phase H_2O is in equilibrium with liquid water room temperature. The same values for the adsorbed species for all the models were used, as vibrational frequencies have been found to depend much less on the surface than the bond strength.

Figure S1. Illustration of structural breakings of some NGDY during ORR process.

Figure S2. Illustration of several double-N¹ doped NGDY and their η^{ORR} values.

Figure S3. Illustration of O_2 dissociation upon second H addition.

Figure S4. $-\eta^{ORR}$ as a function of *Q*.

Reference

1. P. W. Atkins, Physical Chemistry, sixth ed., Oxford University Press, Oxford (1998).