Supporting Information

Turbostratic-Carbon-Localised FeS₂ Nanocrystals as Anode for High

Performance Sodium-Ion Batteries

Yanyan Liu^a, Long Zhang^{a,*}, Di Liu^a, Wentao Hu^a, XinlinYan^b, ChuangYu^c, Hong Zeng^d, TongdeShen^a
^aClean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
^bInstitute of Solid State Physics, Vienna University of Technology, WiednerHauptstr.
8-10, 1040 Vienna, Austria
^cDepartment of Mechanical and Materials Engineering, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 3K7, Canada
^dBeijing Key Laboratory of Energy Nanomaterials, Advance Technology & Materials Co., Ltd, China Iron & Steel Research Institute Group, Beijing 100081, PR China
*Corresponding author. E-mail address: lzhang@ysu.edu.cn (Long Zhang)

Figure S1. (a) XRD patterns of $FeS_2@CNTs$ and FeS_2 after mechanical milling for 35 h and FeS_2+CNTs ball milling for 5 h. The Bragg positions of the pyrite FeS_2 with Pa-3 symmetry are indexed accordingly. XRD patterns of $FeS_2@CNTs$ (b) and FeS_2 (c) for various mechanical alloying times.

Figure S2. Raman spectrum of the pristine CNTs.

Figure S3. Charge transfer between Fe and C atoms.

Figure S4. Elemental mapping of the as-prepared $FeS_2@CNTs$.

Figure S5. TGA curve of FeS₂@CNTs under air atmosphere.

Figure S6. SEM images of FeS_2 under low (a) and high magnifications (b).

Figure S7. Element mapping of $FeS_2@CNTs$ (a) and FeS_2+CNTs (b).

Figure S8. The electrochemical performance of $FeS_2@CNTs$ at a cut off voltage of 0.01–2.8 V. (a) CV curves for the first four cycles at a scan rate of 0.2 mV s⁻¹. (b) Cycling performance at currenties density of 0.2 A g⁻¹ and 0.5 A g⁻¹. (c) Rate performance at various current densities.

Figure S9. Cycling performance and coulombic efficiency of a $FeS_2@graphene$ composite at a current density of 0.5 A g⁻¹.

Figure S10. Ex situ XRD patterns of FeS₂@CNTs after fully discharging and

charging.

	Atomic ratio (%)			atomic ratio normalized to Fe			wt%		
	Fe	S	С	Fe	S	С	Fe	S	С
FeS ₂ @CNTs	28.30	57.75	13.95	1	2.04	0.49	44.02	51.33	4.65

 Table S1. Elemental Analysis of FeS2@CNTs.

Specific Current Fe/S Cut-off Anode density capacity Note loading (%) voltage (V) $(A g^{-1})$ $(mAh g^{-1})$ FeS₂@C 85.5 0.01-2 0.1 511 Ref.50 FeS₂@C-2h 48.5 0.1-2 0.1 543 Ref.52 Fe_{1-x}S@CNTs 70.4 0.01-2.3 0.2 493 Ref.42 400 Fe_{1-x}S@NC@G 62.5 0.01-2.5 0.2 **Ref.19** FeS₂@NSC/G 48 0.01-2.5 0.1 420 Ref.54 594 66.4 0.01-2.5 0.1 Fe_{1-x}S@NC Ref.30 619 rGO@p-FeS₂@C 81.1 0.01-2.8 0.1 Ref.58 G@Y-S FeS2@C 40 0.01-2.8 0.2 521 **Ref.59** 94 0.01-3 406 FeS₂(*a*)G(*a*)CNF 0.1 Ref.45 0.09 700 Fe_7S_8 (a) C NCs 89.48 0.01-3 Ref.12 FeS₂@C 83.2 0.01-3 0.1 620 Ref.60 CL-C/FeS 0.01-3 0.1 466 Ref.61 76.45 0.01-3 Fe₇S₈NPs 74.74 0.1 705 Ref.15 FeS₂@CNTs 95.24 0.01-2 0.1 542 This 0.01-2.8 0.1 755 work

Table S2 Comparation of the electrochemical properties of iron sulfides anodes for