<Supplementary Information>

Carbon nanotube fibers with enhanced longitudinal carrier mobility for high-performance all-carbon thermoelectric generators

Taemin Lee^a, Kyung Tae Park^a, Bon-Cheol Ku^b, and Heesuk Kim^{a,c*}

^aPhoto-electronic Hybrids Research Center, Korea Institute of Science and Technology

(KIST), Seoul 02792, Korea.

*E-mail: heesukkim@kist.re.kr

^bCarbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeollabuk-do, 55324, Korea.

^cDivision of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea.

Fig. S1 Raman spectra (λ_{ex} =633 nm) for pristine CNT powder, CNTs dispersed in CSA, wetspun CNT fibers, and CNT fibers annealed at 250 °C for 2 h. The Raman spectra are normalized to the intensity of the G-band peak.

Fig. S2 XPS high-resolution C(1s) spectra, O(1s) spectra, and relative O/C content ratios of pristine CNT powder, wet-spun CNT fibers, and CNT fibers annealed at 250 °C for 2 h.

Fig. S3 TE performances of the as-spun CNT fibers as a function of (a) annealing temperature for 2 h and (b) annealing time at 250 °C. The CNT fibers spun from a 10 mg/mL CNT concentration were used for thermal annealing at various conditions.

Fig. S4 Thermogravimetric analysis (TGA) curve of the as-spun CNT fiber. It was measured with a heating rate of 10 °C/min under Ar.

Fig. S5 Diameters of the CNT fibers as a function of CNT concentration before and after thermal annealing.

Table S1. A comparison of the wet-spun CNT fiber to the CNT film on the TE performances.The CNT fiber and film were prepared with the same CNT powder.

Types of CNT		Electrical Conductivity (S/cm)	Seebeck Coefficient (µV/K)	Power Factor (µW/m⋅K²)
	As-spun CNT Fiber (1D)	2939	18	92
	Annealed CNT Fiber (1D)	1353	57	432
-	CNT Film (2D)	497	46	106

Ne	Fiber Composition	Thermoelectric power factor (uW/mk ²)		1:4
NO.		<i>p</i> -type fiber	<i>n-</i> type fiber	
1	PANI/MWCNT	0.17		J. Mater. Chem., 2012, 22, 17612
2	P3OT/carbon fiber	7.05		Composites: Part B 2015, 69, 467
3	Lignin/PAN fiber	9.27	10.2	Int. J. Biol. Macromol., 2019 , 121, 472
4	PEG/SWCNT	82	48.2	J. Mater. Chem. A 2017 , 5,12068
5	PEDOT:PSS/SWCNT	83.2	113.2	Carbon 2018, 133, 293
6	PVDF/SWCNT	378	289	Nanoscale 2018 , <i>10</i> , 19766
7	DWCNT	431.8	322.6	This work

Table S2. A comparison of this work to recent works on TE performance of the wet-spunCNT fibers. Data points were extracted from the references.