## Supporting Information

## 3D highly efficient photonic micro concave-pit arrays for enhanced

## solar water splitting

Ming Li, Le Chen<sup>b\*</sup>, Chao Zhou<sup>c</sup>, Chengchao Jin<sup>d</sup>, Yanjie Su<sup>c\*</sup>, Yafei Zhang<sup>c</sup>

<sup>a</sup> State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and

Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China

China School of

<sup>b</sup> School of Physics and Telecommunication Engineering, Guangxi Colleges and Universities Key Lab of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537400, PR China

<sup>c</sup> Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China <sup>d</sup> College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China

\*Corresponding authors.

Email addresses: chenle11@126.com (L. Chen); yanjiesu@sjtu.edu.cn (Y. Su).



Fig. S1. Cross-sectional SEM image of ITO film grown on a planar glass.



Fig. S2. (a) Low and (b) high-magnification SEM image of ITO film grown on a 3D

MCPAs-based glass.



Fig. S3. Cross-sectional SEM image of  $In_2S_3$  nanosheet arrays grown on a planar ITO

glass.



Fig. S4. XRD patterns of single In<sub>2</sub>S<sub>3</sub> and In<sub>2</sub>S<sub>3</sub>/ZnO heterojunction nanosheet arrays

grown on 3D MCPAs-based electrodes.



**Fig. S5.** The full XPS spectrum of  $In_2S_3/ZnO$  heterojunction nanosheet arrays.



Fig. S6. Transmittance (a) and reflectance (b) spectra of the  $In_2S_3$  nanosheet arrays on

planar and 3D MCPAs-based electrodes.



Fig. S7. Transmittance (a) and reflectance (b) spectra of the  $In_2S_3/ZnO$  heterojunction nanosheet arrays on planar and 3D MCPAs-based electrodes.