Electronic Supplementary Information (ESI)

Surface effects on a photochromic spin-crossover iron(II) molecular switch adsorbed on highly oriented pyrolytic graphite.

Lorenzo Poggini,* Giacomo Londi, Magdalena Milek, Ahmad Naim, Valeria Lanzilotto, Brunetto Cortigiani, Federica Bondino, Elena Magnano, Edwige Otero, Philippe Sainctavit, Marie-Anne Arrio, Amélie Juhin, Mathieu Marchivie, Marat M. Khusniyarov, Federico Totti,* Patrick Rosa, Matteo Mannini.

Table S1. Atomic concentration estimated by XPS for SCO sub-monolayer (0.7ML) evaporated on HOPG							
Element	Fe2p	N1s	B1s	S2p			
Experimental	5.2	65.8	13.1	15.9			
Theoretical	6.7	66.7	13.3	13.3			

Table S2. Binding Energies (B.E.) of the spectral components obtained for the Fe2p XPS by a least square fitting procedure. The integrated areas are reported like percentages of each component.

Components	A+A'	B+B'	C+C'	D+D'	E+E'
	%; B.E.				
158K	33.3%; 708.9 eV	25.1%; 709.9 eV	17.9%; 712.1 eV	13%; 715.6 eV	10.7%; 718.4 eV
192K	22.1%; 708.9 eV	35.3%; 710.0 eV	17.9%; 712.0 eV	15.1%; 715.3 eV	9.6%; 718.3 eV
245K	9.2%; 708.8 eV	37.0%; 709.9 eV	23.9%; 712.0 eV	18.3%; 715.3 eV	11.6%; 718.3 eV
297K	5.9%; 708.9 eV	32.4%; 710.0 eV	31.4%; 712.0 eV	18.6%; 715.6 eV	11.4%; 718.4 eV
297K + λ282nm	5.7%; 708.9 eV	34.9%; 710.0 eV	29.2%; 711.9 eV	18.5%; 715.5 eV	11.7% 718.2 eV

Figure S1. Computed DOS for the 1-par-HS (red line) and 1-par-LS (blue line), where A, B, and C indicate the three characteristic energy regions of the 1 system. **EXP:** UPS spectra from -14 eV to 0 eV ($E-E_F$) at 297K (red line), 90K (blue line) and after UV irradiation at 297K (green line). The two vertical lines delimit the valence-Fermi region (A region), from the semi-core (B) region, from the core (c) region on the spectra.

Figure S2. (a) Temperature evolution of the $FeL_{2,3}$ edges XAS spectra for a sub monolayer deposit of **1** on HOPG (empty circles), along with best fitting lines (green line), calculated as described in the Methods section. High-spin Fe(II) and low-spin Fe(II) contributions are blue and red lines, respectively. The spectra, taken on the same spot of the sample, point out the occurrence of a reversible thermally driven high-spin Fe(II) to low-spin Fe(II) conversion on lowering the temperature, in line with an entropy driven SCO process at the sub-monolayer level. Broken vertical lines correlate spectral features belonging to the different spin states throughout the series. (b and c) high-spin Fe (II) thermal distribution profile (empty circles) obtained from XAS spectra taken before (b) and after (c) laser light irradiation at 4 K for a 4 nm deposit of **1** on freshly cleaved HOPG. In b) and c) the red line is the fit of empty black dots by a Boltzman distribution, giving a $T_{1/2}$ of 146±8K and 61±5K respectively. Data measured for the bulk sample are taken from ref. S1 and are reported as wide coloured bands for comparison.

Figure S3. XAS spectra of 0.7ML deposit of **1** on HOPG at 4.2K: a) before and after irradiation at 660nm - LIESST effect, b) upon subsequent warming - thermal relaxation, c) comparison of the XAS spectra before and after a thermal cycle (300K -4K - 300K).

Figure S4. XAS spectrum of 0.7ML deposit of 1 on HOPG, before a) and after UV exposure b).

Table S3: Calculated bond lengths and angles involving the iron metallic core in comparison with experimental data, obtained in ref. s_1 , alongside computed θ values, defined as the angle between the plane determined by the phenanthroline plane and

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |x_{cal} - x_{exp}|$$

the thiophene plane. Mean absolute deviation are also reported, where

$$MAD = \frac{1}{n} \sum_{i} |x_{cal} - x_{exp}|$$

. See Fig. S4 for the labelling.

	1 -LS ^{s1}	1-LS-anti	1-LS-par	1 -HS ^{s1}	1-HS-anti	1-HS-par	
	Bond length (Å)			Bond length (Å)			
Fe-N1	1.967	1.972	1.980	2.184	2.224	2.207	
Fe-N2	1.969	1.963	1.967	2.179	2.218	2.216	
Fe-N6	1.999	1.989	1.993	2.144	2.138	2.139	
Fe-N3	2.002	2.002	2.003	2.164	2.169	2.152	
Fe-N7	2.005	1.989	1.982	2.142	2.130	2.133	
Fe-N4	2.008	2.003	2.010	2.173	2.161	2.200	
MAD	-	0.01	0.01	-	0.02	0.02	
	Angle (degrees)			Angle (degrees)			
N2-Fe-N6	176.14	177.84	176.56	169.26	166.48	167.78	
N1-Fe-N7	177.29	177.90	176.24	171.59	174.35	172.60	
N3-Fe-N4	178.74	179.13	178.89	177.91	176.82	179.08	
MAD	-	0.90	0.54	-	2.21	1.22	
$\theta_{anti(1,2)}$	61.8/72.6	61.1/72.5	-	65.2/74.5	65.3/67.7	-	
$\theta_{par(1,2)}$	64.4/72.6	-	51.6/77.0	66.9/74.5	-	52.2/75.1	

S1 M. Milek, F. F. W. Heinemann and M. M. M. Khusniyarov, Inorg. Chem., 2013, 52, 11585–92.