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1. The total system of equations for interaction between crack propagation and phase 
transformation 

We denote contractions between tensors A={Aij} and B={Bij} as A∙B={AijBjk}, A:B=AijBji, and 

A⨂B=AijBkl. The subscripts 0, d, A, and M are for the undamaged solid, fully-damaged solid, 

austenite, and martensite, respectively. The PT and damage are described by the order parameters 

η and ϕ, respectively; both vary between zero and unity. η is the order parameter which describes 

phase transformation; The austenite (A) corresponds to η=0 and martensite M to η=1. ϕ is the 

order parameter which describes damage; the undamaged state is described by ϕ=0 and fully 

damaged by ϕ=1. The crack surface with a narrow width in which the material is partially broken 

is described by 0<ϕ <1. Equations related to PTs, fracture, and surface-induced PTs alone are most 

close to those presented in the previous models1-3, respectively. 

The relationship between strain ε, displacement u, and decomposition of the strain into elastic 

εe and transformational ( )t f ηε  parts are 

( ) ( )T
e t+ f η0.5 = += ∇ ∇ε ε εu u ; (S1) 

2 3 4( ) (4 2 ) ( 3)f a a aη η η η= + − + − . (S2) 
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The interpolation function f  is justified1 and satisfies (0) 0f = , (1) 1f = , and (0) (1) 0f f′ ′= =  and 

will be used for any material property. This allows one to ensure that η=0 and η=1 are the 

thermodynamic equilibrium values of η for any temperature and stresses. The Helmholtz free 

energy is 

; ; ,e f PT f c PT
φ ηψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ= + + = + = + +



∇ ∇  (S3) 

where fψ and PTψ are the fracture and PT energy. 

Elastic energy has the form  
2

00.5(1 ) : :e
e eψ − φ= ε εC ;   0 A M A( ) ( )f η= + −C C C C , (S4) 

where C0 is the tensor of elastic moduli. Isotropic elasticity is used for simplicity, for which 

tensors C (CA and CM) have the following structure 

0 0 0 4
2( ) 2
3

K G G= − ⊗ +C I I I , (S5) 

where G0 and K0 are shear and bulk moduli, I is the second-order identity tensor, and I4 is the 

symmetric fourth-order identity tensor.  

Cohesion energy is 

2 ( ) ( )
( )

c f
l
γ ηψ φ
η

= ;  A M A( ) ( ) ( )fγ η γ γ γ η= + − ; 

A M A( ) ( ) ( )l l l l fη η= + − ; M A Atl l l= ⋅− ⋅n nε ,  

(S6) 

where ( )γ η  is the specific isotropic surface energy, l is the initial distance between two planes 

forming crack surfaces, and /= ∇ ∇φ φn  is normal to this plane. Change in surface energy during 

the PT from its value for A Aγ  to that for M Mγ  is explicitly included in the formulation. This 

integrates our PFA to fracture and PTs with PFA to surface-induced PTs and pretransformations4, 

5, which was not previously applied to fracture. We use the advanced expression for ( )γ η 6, which, 

in contrast to the other models4, 5, allows for the non-contradictory description of the equilibrium 

states at the surface. 

Gradient energies for crack φψ ∇  and PT ηψ
∇  are 

20.5 ( )φ φψ β η φ=∇ ∇ ;     ( ) 0.612 ( ) ( )lφβ η γ η η= ; (S7) 



20.5 ( )η ηψ β φ η=∇ ∇ ;    0 0( ) ( ) ( )d fηβ φ β β β φ= + − , 

where the expression for ( )φβ η  is taken from 2. 

The double-well barrier function for PT is  
2 2(1 ) ;Aψ η η= −   ( )cA A θ θ= − ; 

0 0( ) ( )dA A A A f φ= + − ; 0 0( ) ( )c c c c
d fθ θ θ θ φ= + − , 

(S8) 

where cθ  is the critical temperature at which stress-free A loses its thermodynamic stability, A   

is the barrier for transformation between A and M and A is material parameter. 

Chemical part of the free energy ψ  is  

( )G fθψ η= ∆ , ( )e eG sθ θ θ∆ = −∆ − ;  

0 0( ) ( )e e e e
ds s s s f φ∆ = ∆ + ∆ − ∆ ; 0 0( ) ( )e e e e

d fθ θ θ θ φ= + − , 
   (S9) 

where eθ  is the thermodynamic equilibrium temperature for stress-free A and M and es∆  is the 

jump in specific entropy at eθ . Analyzing analytical solutions for the A-M interface7 and the crack 

surface 2, we accept for a specific model: 

0dA = ;  0
c c c

dθ θ θ= = ;  0dβ = ;  0
e e e

ds s s∆ = ∆ = ∆ , 

and 0
0

e e
dθ θ θ= = ; A( ) :l l lη = = . 

(S10) 

These assumptions, in particular, imply that the A-M interface energy vanishes during damage. 

We also assume a=0 for interpolation of ψ 1 and a=3 for ψc 2 and all other parameters.  

Stress tensor is defined by the Hooke’s law: 

2
0(1 ) : e

ψ φ∂
= = −
∂

σ ε
ε

C . (S11) 

Ginzburg-Landau equations are 
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where Lϕ and Lη are the kinetic coefficients; Lϕ=0 when the crack is under closing compressive 

stresses2. In such a way we exclude crack propagation under closing stresses. This is a stricter 

approach2 than to exclude some parts of elastic energy, which are related to the compressive 

stresses/strains, from the driving force for crack propagation8. 

Coupled system of Eqs. (1)-(13) (some of them are included in the extended version of Eqs. 

(12)-(13)) along with equilibrium equations ⋅ =∇ σ 0  and boundary conditions for the order 

parameters, / 0ψ η⋅∂ ∂ =∇n  and / 0ψ φ⋅∂ ∂ =∇n , are solved using the finite-element method and 

COMSOL code. A flow chart for the problem formulation and solution is presented in Fig. S1. 

 
Figure S1. Flow chart of the methodology 



2. Material Parameters 

We consider phase transformation between cubic austenite and tetragonal martensite in NiAl 

associated with the transformation strain εt. All material parameters are collected in Table S1.  

Table S1. Material parameters and their physical meaning 

Definition/physical meaning 
Value from the literature 7 

unless otherwise stated 

Isotropic bulk modulus (the same for austenite and martensite) K0=112.62 GPa 

Isotropic shear modulus (the same for austenite and martensite) G0=71.5 GPa 

Transformation strain from cubic austenite to tetragonal martensite εt=(0.215,−0.078,−0.078) 

Double well barrier parameter between the austenite and martensite A0=4.40 MPa/K 

Gradient energy coefficient for the phase transformation β0=5.18×10-10 N 

Phase equilibrium temperature for the stress-free austenite and martensite θe=215 K 

Critical temperature at which stress-free A loses its thermodynamic 

stability 
θc=−183 K 

Energy of phase interphase E=0.2245 N/m 

Kinetic coefficients for phase transformation Lη=2596.5 (P a∙s)-1 

Kinetic coefficients for fracture (assumed from the accepted range2) Lϕ=1000(Pa∙s)-1 

3. Propagation of the interfacial crack 

Here, the same problem is solved as in Figure 4 of the main text (i.e. evolution of the initial 

interfacial crack at θ=θe), with all the same material parameters, including M A/γ γ γ= , but both 

Aγ  and Mγ  are decreased by a factor of two. Results are generally close to those in Figure 4, but 

nonzero damage spreads over a large region around a secondary crack outside the interface, which 

is unexpected. However, this is not contradictory, because as our analysis2 shows, most phase field 

models for fracture, including the current one, allow stable damage below the ultimate strength, 

which causes deviation of the stress-strain curve from the straight line. In our case, large stresses 

at the crack tip and due to termination of the lattice misfit at the crack’s free surfaces became close 

to the ultimate strength of martensite due to the small chosen Mγ =0.5 N/m. This does not happen 

at Mγ =1 N/m  due to the larger ultimate strength of martensite. Due to the smaller ultimate strength 

of martensite, the crack moves faster in Figure S2 than in Figure 4. Also, crack propagation is not 



continuous. In Figure S2 (b), maximum damage in martensite is shifted from the crack tip in 

austenite due to smaller strength. After stress exceeds the ultimate strength of the martensite at this 

location, material instability starts and a new crack nucleates in Figure S2 (c). Next, both cracks 

coalesce and the resultant crack continues propagation in the martensite (Figure S2 (d)). Figure S2 

(a) also shows the deviation of crack to martensite due to its smaller ultimate strength without new 

crack nucleation. 

 

Figure S2. Damage distribution ϕ within and outside the phase interface shown in the region [x,y]=[(-10 10),(25 
50)] for l=1 and different conditions. (a) Damage at time t=2 for 0.5 / 2γ = ; (b) – (d) Damage evolution for times 

1.5, 2.0, and 2.5 for 0.5 /1γ = . 

REFRENCES 

1. V. I. Levitas and D. L. Preston, Physical Review B, 2002, 66, 134206. 
2. V. I. Levitas, H. Jafarzadeh, G. H. Farrahi and M. Javanbakht, International Journal of Plasticity, 

2018, 111, 1-35. 
3. V. I. Levitas and M. Javanbakht, Physical Review Letters, 2011, 107, 175701. 
4. R. Lipowsky, Physical Review Letters, 1982, 49, 1575-1578. 
5. B. Pluis, D. Frenkel and J. F. van der Veen, Surface Science, 1990, 239, 282-300. 
6. V. I. Levitas and M. Javanbakht, Physical Review Letters, 2010, 105, 165701. 
7. V. I. Levitas, D. L. Preston and D.-W. Lee, Physical Review B, 2003, 68, 134201. 
8. R. Schmitt, C. Kuhn, R. Skorupski, M. Smaga, D. Eifler and R. Müller, Archive of Applied 

Mechanics, 2015, 85, 1459-1468. 

 


