Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Room Temperature Ultrafast Synthesis of N- and O- Rich Graphene Films with Expanded interlayer distance for High Volumetric Capacitance Supercapacitor

Cong Huang^a, Aiping Hu^{a*}, Yanhua Li^a, Haifeng Zhou^a, Yali Xu^a, Yan Zhang^a, Shengping Zhou^a, Qunli Tang^a, Chuansheng Chen^b, and Xiaohua Chen^{a*}

^a College of Materials Science and Engineering, Hunan Province Key Laboratory for

Advanced Carbon Materials and Applied Technology, Hunan University, Changsha

410082, P. R. China

^b College of Materials Science and Engineering, Changsha University of Science and

Technology, Changsha, 410114, P. R. China

*Corresponding author: xiaohuachen@hnu.edu.cn; hudaaipinghu@126.com

The calculation of the electrochemical measurement results

The gravimetric capacitance was calculated by CV curves as follows:

$$C_g = \frac{\int I dU}{2\nu m \Delta V} \tag{1}$$

Where C_g (F g⁻¹), v (V s⁻¹), m (g), ΔV (V) and I (A) represents the gravimetric capacitance, the scan rate, the mass of electrode material, the potential window of CV curves, the response-current of CV curves, respectively.

The gravimetric capacitance was calculated by GCD curves using the following equations:

$$C_g = \frac{It}{m\Delta V}$$
(2)
(For three electrode system)

$$C_g = \frac{2It}{m\Delta V} \tag{3}$$

(For two electrode system)

Where C_g (F g⁻¹) is the gravimetric capacitance, m (g) is the mass of a single electrode material, ΔV (V) is the potential window of GCD curves (exclude IR drop), I (A) is the discharge current and t is the discharge time (s).

The volumetric capacitance was calculated using the following equation:

$$C_v = C_g \times \rho \tag{4}$$

Where C_v (F cm⁻³) is the volumetric capacitance, C_g (F g⁻¹) is the gravimetric capacitance and ρ (g cm⁻³) is the density of electrode.

The volumetric energy density and power density was calculated using the following equation:

$$E_v = \frac{1}{3.6 \times 8} C_V \Delta V^2$$

$$P_v = \frac{3600E_v}{t}$$
(5)
(6)

Where E_v (Wh L⁻¹) is the volumetric energy density, C_v (F cm⁻³) is the volumetric capacitance, ΔV (V) is the potential window (exclude IR drop), P_v (W L⁻¹) is the the volumetric power density and t (s) is the discharge time.

Fig. S1 The digital photo of (a) GO film and (b) RGO film.

Fig. S2 UV-vis absorption spectra of MB solution after 48 h absorption by RGO and F-RGO-X (X=20, 40, 60).

Fig. S3 XPS survey spectra of F-RGO-20 and F-RGO-40.

Sample	C=C/C-C	C-0	С=О	0-C=0
RGO	81.47%	13.23%	5.3%	0%
F-RGO-60	69.27%	21.67%	7.04%	2.02%

 Table S1. Atomic percentage of different functional groups.

Fig. S4 Water contact angle of (a) RGO, (b) F-RGO-20, (c) F-RGO-40, (d) F-RGO-60.

Fig. S5 CV curves of (a) RGO, (b) F-RGO-20, (c) F-RGO-40, (d) F-RGO-60 at different scan rate.

Fig. S6. GCD curves of (a) RGO, (b) F-RGO-20, (c) F-RGO-40, (d) F-RGO-60 at different current density.

Fig. S7 (a) CV curves of F-RGO-80 at different scan rates. (b) GCD curves of F-RGO-80 at different current densities. (c) Comparison of specific capacitances versus current densities. (d) Nyquist plots of F-RGO-80.

Materials	Density (g cm ⁻³)	Electrolyte	Test	C _g (F g ⁻¹)	C _v (F cm ⁻³)
Ternary-doped holey graphene hydrogel ¹	0.67	1.0 M H ₂ SO ₄	1 A g ⁻¹	350	234*
Graphene–carbon nanosphere films ²	1.4	6.0 M KOH	1 A g ⁻¹		252
Graphene–CNT films ³	1.5	6.0 M KOH	1 A g ⁻¹		250
the reduced holey graphene films ⁴	1.14	1.0 M H ₂ SO ₄	1 A g ⁻¹	260	297*
Activated carbon- graphene ⁵	0.76	6.0 M KOH	1 A g ⁻¹		120
Folded Graphene Ribbon Film ⁶	0.92	6.0 M KOH	2 mV s ⁻¹	318	293*
Iodine-steam doped graphene films ⁷		6.0 M KOH	0.2 A g ⁻¹	150	
Carbon fiber- graphene ⁸	0.00075	1.0 M H ₂ SO ₄	1 A g ⁻¹	215	0.161*
Defect-enriched graphene block ⁹	0.917	6.0 M KOH	1 A g ⁻¹	235	215*
3D porous RGO film ¹⁰	0.95	1.0 M H ₂ SO ₄	1 A g ⁻¹	181.3	172.3
TL:1	1.47	6.0 M KOH	1 A g ⁻¹	217.3	319.4*
1 nis work			0.1 A g ⁻¹	178.6	262.5

Table S2. Comparison of electrochemical performances of graphene based materials in aqueous electrolyte.

*represent the three-electrode system

Fig. S8 (a) CV curves of F-RGO-60 in 0.5 M Na_2SO_4 with a three-electrode configuration. (b) Comparison of specific capacitances versus scan rates.

Fig. S9 Electrical conductivity of RGO film and F-RGO-X (X=20, 40, 60 and 80).

Fig. S10 Capacitive contribution of (a) RGO, (b) F-RGO-20, (c) F-RGO-40, (d) F-RGO-60 at the scan rate of 20 mV s⁻¹.

References

- Z. H. Pan, H. Z. Zhi, Y. C. Qiu, J. Yang, L. D. Xing, Q. C. Zhang, X. Y. Ding, X. S. Wang, G. G. Xu, H. Yuan, M. Chen, W. F. Li, Y. G. Yao, N. Motta, M. N. Liu and Y. G. Zhang, *Nano Energy*, 2018, 46, 266-276.
- 2. N. Díez, M. Qiao, J. L. Gómez-Urbano, C. Botas, D. Carriazo and M. M. Titirici, *Journal of Materials Chemistry A*, 2019, **7**, 6126-6133.
- 3. N. Díez, C. Botas, R. Mysyk, E. Goikolea, T. Rojo and D. Carriazo, *Journal of Materials Chemistry A*, 2018, **6**, 3667-3673.
- D. Q. Liu, Q. W. Li and H. Z. Zhao, *Journal of Materials Chemistry A*, 2018, 6, 11471-11478.
- 5. P. Li, H. Li, D. Han, T. Shang, Y. Deng, Y. Tao, W. Lv and Q. H. Yang, *Advanced Science*, 2019, DOI: 10.1002/advs.201802355.
- 6. L. Z. Sheng, J. Chang, L. L. Jiang, Z. M. Jiang, Z. Liu, T. Wei and Z. J. Fan, *Advanced Functional Materials*, 2018, **28**.
- 7. Y. C. Zhu, X. K. Ye, H. D. Jiang, L. L. Wang, P. Zhao, Z. Y. Yue, Z. Q. Wan and C. Y. Jia, *Journal of Power Sources*, 2018, **400**, 605-612.
- 8. H. L. Luo, P. X. Xiong, J. Xie, Z. W. Yang, Y. Huang, J. M. Hu, Y. Z. Wan and Y. H. Xu, *Advanced Functional Materials*, 2018, **28**.
- 9. Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao, Y. Chen, X. Chen and H. Song, *Advanced Functional Materials*, 2019, DOI: 10.1002/adfm.201901127.
- Y. Shao, M. F. El-Kady, C. W. Lin, G. Zhu, K. L. Marsh, J. Y. Hwang, Q. Zhang, Y. Li, H. Wang and R. B. Kaner, *Adv Mater*, 2016, 28, 6719-6726.