Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Electric Supplementary Information

Investigation of surface confinement effect of copper nanoclusters: construction of ultrasensitive fluorescence turn-on bio-enzyme sensing platform

Jinlan Yang ^a, Naizhong Song ^a, Qiong Jia ^{a, b*}

^a College of Chemistry, Jilin University, Changchun 130012, China

^b Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China

* Corresponding author.

E-mail address: jiaqiong@jlu.edu.cn (Q. Jia).

CONTENTS

Figs. S1-S10 ·····	SI-2
Cables S1-S2 SI-12	2
References ······	SI-14

Fig. S1 Size distribution of GS-CuNCs.

Fig. S2 XPS spectrum of LDH.

Fig. S3 Auger Cu LMM spectra of GS-CuNCs.

Fig. S4 UPS spectra of (A), (B) GS-CuNCs and (C), (D) LDH.

Fig. S5 Band gap energies of (A) GS-CuNCs and (B) LDH.

Fig. S6 Digital photos of GS-CuNCs stored for 0 day and 1 day at room temperature.

Fig. S7 The 20-day fluorescence intensity of GS-CuNCs/LDH (I_0 was the initial fluorescence and I was the fluorescence intensities during different days).

Fig. S8 DLS results of GS-CuNCs/LDH (A) before and (B) after HA capping.

Fig. S9 SEM images of GS-CuNCs/LDH (A) before and (B) after HA capping.

Fig. S10 Fluorescence emission spectra of GS-CuNCs/LDH sensing system in the presence of HA with different concentrations.

Detection Method	Linear range	LOD	Ref.
	$(U m L^{-1})$	$(U m L^{-1})$	
Colorimetry/ AuNPs	2.4-3.6	2.4	1
Colorimetry / AuNPs	1.25–50	0.63	2
Fluorescence /Carbon dots	$0.2 - 10^4$	0.1	3
Fluorescence / Carbon dots	0–400	0.65	4
Fluorescence / Carbon dots	0.1-8	0.05	5
Fluorescence / Cationic conjugated polymer	0-1.85	0.075	6
Fluorescence / MoS_2 quantum dots	1–50	0.7	7
Fluorescence / Au/AgNCs	0.5–27.5	0.3	8
Fluorescence / Pyrene analog	-	0.007	9
Fluorescence / GS-CuNCs/LDH	0–0.4	0.014	This work

Table S1. Comparison of different detection methods for HAase.

Sample	Found	Added	Detected	Recovery	RSD (n=3,
	$(U \cdot mL^{-1})$	$(U \cdot mL^{-1})$	$(U \cdot mL^{-1})$	(%)	%)
Urine 1	7.82	5.0	13.09	105.4	3.3
		10.0	16.87	90.5	1.9
Urine 2	11.63	5.0	16.45	96.4	4.4
		10.0	22.06	104.3	3.7
Urine 3	9.48	5.0	14.64	103.2	3.8
		10.0	20.13	106.5	3.7
Urine 4	5.94	5.0	11.36	108.4	1.6
		10.0	16.82	108.8	2.1

Table S2. Results of the determination of HAase in urine.

* The urine samples were diluted with different multiples to ensure that the concentration of HAase was in the linear range.

References

- A. I. Nossier, S. Eissa, M. F. Ismail, M. A. Hamdy and H. M. Azzazy, *Biosens. Bioelectron.*, 2014, 54, 7-14.
- D. Cheng, W. Han, K. Yang, Y. Song, M. Jiang and E. Song, *Talanta*, 2014, 130, 408-414.
- 3 K. Yang, M. Liu, Y. Wang, S. Wang, H. Miao, L. Yang and X. Yang, *Sens. Actuators B-Chem.*, 2017, **251**, 503-508.
- 4 N. Gao, W. Yang, H. Nie, Y. Gong, J. Jing, L. Gao and X. Zhang, Biosens. Bioelectron., 2017, 96, 300-307.
- 5 W. Yang, J. Ni, F. Luo, W. Weng, Q. Wei, Z. Lin and G. Chen, *Anal. Chem.*, 2017, **89**, 8384-8390.
- 6 Y. Huang, C. Song, H. Li, R. Zhang, R. Jiang, X. Liu, G. Zhang, Q. Fan, L. Wang and W. Huang, *ACS Appl. Mater. Interfaces*, 2015, **7**, 21529-21537.
- 7 W. Gu, Y. Yan, C. Zhang, C. Ding and Y. Xian, ACS Appl. Mater. Interfaces, 2016, 8, 11272-11279.
- 8 Q. Liu, X. Yan, Q. Lai and X. Su, Sens. Actuators B-Chem., 2019, 282, 45-51.
- 9 Q. Hu, F. Zeng and S. Wu, *Biosens. Bioelectron.*, 2016, 79, 776-783.