Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Tiny Ni particles dispersed in platelet SBA-15 materials induce high efficiency for

CO₂ methanation

Ming-Han Liu^a, Ching-Shiun Chen,^{*bc} Hsi-An Chen,^a Jia-Huang Wu,^b Hung-Chi Wu^b

and Chia-Min Yang*a

^aDepartment of Pathology, Chang Gung Memorial Hospital, 5, Fusing St., Guishan Dist., Taoyuan City

33302, Taiwan, Republic of China.

^bDepartment of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of

China.

°Center for General Education, Chang Gung University, 259, Wen-Hua 1st Rd., Guishan Dist.,

Taoyuan City 33302, Taiwan, Republic of China.

*Corresponding authors

E-mail: cschen@mail.cgu.edu.tw; cmyang@mx.nthu.edu.tw

Catalyst	Ni loading	particle size	Temperature	H ₂ /CO ₂	GHSV	TOF	CH ₄ selectivity	Dafaranaa
	(wt%)	(nm)	(K)	ratio	(cm ³ g ⁻¹ h ⁻¹)	(s ⁻¹)	(%)	Kelerence.
Ni/p-SBA-15	3.14	< 1	573	1/1	600,000	1.48	68	this study
Ni/p-SBA-15	4.82	3.4	573	1/1	600,000	0.94	72	this study
Ni/TiO ₂	14.8	2.1	473	4/1	9,000	1.2×10 ⁻³	97	34
Ni/TiO ₂	16.8	2.6	473	4/1	9,000	9.3×10 ⁻⁴	99	34
Ni@MIL-101	20	2.9	573	4/1	3,000	1.2×10 ⁻³	100	40
Ni/CaO-Al ₂ O ₃	23	8.0	523	4/1	15,000	2.0×10 ⁻²	90-100	39
Ni/SiO ₂	10	16.4	523	4/1	2,400	4.4×10 ⁻³	10	32
Ni/ZMS-5	10	14.3	523	4/1	2,400	7.6×10 ⁻³	20	32
Ni/MCM-41	10	30.3	523	4/1	2,400	3.4×10 ⁻³	5	32
Ni/ZrO ₂	3	1.4	573	4/1	15,000	5.4×10 ⁻³	100	50
Ni/ZrO ₂	6	2.3	473	4/1	15,000	1.2×10 ⁻²	100	50
Ni/ZrO ₂	9	3.8	473	4/1	15,000	7.0×10 ⁻³	100	50
Ni/SBA-15	3	6.8	673	4/1	24,900	1.2	98	51
Ni/SBA-15	5	7.0	673	4/1	24,900	1.63	99	51
Ni/SBA-15	10	8.7	673	4/1	24,900	1.61	99	51
Ni/MSN	5	9.9	573	4/1	50,000	1.61	100	52

Table S1 Comparison of CO_2 hydrogenation on Ni based catalysts

Fig. S1 N₂ physisorption measurements of the p-SBA-15, SBA-15, Ni/p-SBA-15 and

Ni/SBA-15 samples.

Fig. S2 The curves of pore distribution for the p-SBA-15, SBA-15, Ni/p-SBA-15 and

Ni/SBA-15 samples.

Fig. S3 Energy-dispersive spectroscopy (EDS) of 3 wt% Ni/p-SBA-15.

Fig. S4 H_2 -TPR profiles of the p-SBA-15, SBA-15, NiO/p-SBA-15 and NiO/SBA-15

samples after calcination in air at 773 K for 5 h.

Fig. S5 Temperature-dependent CO_2 hydrogenation on the Ni/p-SBA-15 and Ni/SBA-15 catalysts: (A) overall CO_2 conversionn; (B) CO yield and (C) CH_4 yield. A H_2/CO_2 stream (1:1 ratio) with a 100 mL min⁻¹ flow rate was passed over 10 mg of the catalyst. The GHSV was 600,000 cm³g⁻¹h⁻¹.

Fig. S6 Comparison of the CH_4 selectivity during CO_2 hydrogenation on the Ni/p-

SBA-15 and Ni/SBA-15 catalysts as a function of temperature.

Fig. S7 Time-dependent conversion and CH_4 selectivity during CO_2 hydrogenation on the 3 wt% Ni/ SBA-15 catalyst. A H_2/CO_2 stream (1:1 ratio) with a 100 mL min⁻¹

flow rate was passed over the catalyst.

Fig. S8 XRD spectra of 3 wt% Ni/p-SBA-15 and 3 wt% Ni/SBA-15 catalysts after the

long-term tests in Fig. 7 and Fig. S7.

Fig. S9 N_2 physisorption measurements of the fresh and post-reaction for 3 wt% Ni/p-

SBA-15 and 3 wt% Ni/SBA-15 catalysts.

Fig. S10 TEM and particle distribution of the fresh and post-reaction for 3 wt% Ni/p-

SBA-15 and 3 wt% Ni/SBA-15 catalysts.

Fig. S11 Comparison of the CH4 selectivity versus reaction conversion on the Ni/p-

SBA-15 and Ni/SBA-15 catalysts at 573 K.

Fig. S12 IR spectra of H_2 and CO_2 coadsorbed onto the 3 wt% Ni/SBA-15 catalyst at various temperatures. A H_2/CO_2 (50/50) stream with a 20 mL min⁻¹ flow rate was passed over the catalyst.

Fig. S13 Temperature-dependent reaction rates for CO_2 hydrogenation on the different reduction temperature on 3 wt% Ni/p-SBA-15: (A) overall CO_2 hydrogenation; (B) CO formation and (C) CH₄ formation. A H₂/CO₂ stream (1:1 ratio) with a 100 mL min⁻¹ flow rate was passed over 10 mg of the catalyst. The GHSV was 600,000 cm³g⁻¹h⁻¹.

Fig. S14 Temperature-dependent reaction rates for CO hydrogenation on the different reduction temperature on 3 wt% Ni/p-SBA-15. A H₂/CO stream (3:1 ratio) with a 100 mL min⁻¹ flow rate was passed over 10 mg of the catalyst. The GHSV was 600,000 $cm^3g^{-1}h^{-1}$.

Fig. S15 UV-Vis spectra of SBA-15, p-SBA-15, 3% Ni/p-SBA-15 and 3% Ni/SBA-

15 samples.

Fig. S16 Temperature-dependent CO₂ hydrogenation on 3 wt% Ni/p-SBA-15 with and without 0.1 wt% Zr additives. A H_2/CO_2 stream (1:1 ratio) with a 100 mL min⁻¹ flow rate was passed over 10 mg of the catalyst. The GHSV was 600,000 cm³g⁻¹h⁻¹.