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Fig. S1. (a) Experiment setup and (b) the AFM topographic images during nanomanipulation demonstrate a single

GNR was moved from the glass onto the TMDCs monolayer, and the scale bar is 500 nm.
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Fig. S2. (a) Schematic of the sample, top view. (b) Scattering spectra of the pristine TMDCs (red) and TMDCs edge
(black) without GNR. Comparing to the scattering intensity of the single GNR (blue), the scattering signal of the
pristine TMDCs (red) and TMDCs edge (black) without GNR can be ignored. (c) PL spectra of pristine WS, (green),
MoS, (orange), WSe; (purple) and MoSe; (pink) on glass substrate. The continuous-wave laser at a wavelength of
532 nm was employed as the illumination source. An oil-immersion objective lens with a numerical aperture (1.3)

was used for both excitation and collection. And the diameter size of the laser focus spot was about ~500 nm.
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Fig. S3. Scattering spectra of GNR before (black) and after (red) coupling to TMDCs, WS, (a), MoS, (b), WSe; (c),
and MoSe, (d), respectively. The scattering spectra of GNR on the glass substrate is fitted by the Lorentz model
(blue), and the scattering spectra of GNR-TMDCs hybrid is fitted by the Fano model (green). Coupling effect on
scattering spectra between single GNR and WS,, redshift 14 nm (a), single GNR and MoS,, redshift 25 nm (b),

single GNR and WSe;,, redshift 18 nm (c), single GNR and MoSe;, redshift 22 nm (d).
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Fig. S4. Scattering spectra of different GNRs coupling to WS, via using the AFM nanomanipulation technique.

Scattering spectra of GNR on glass (black) and GNR on WS, (red).
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Fig. S5. Scattering spectra of different GNRs coupling to MoS, via using the AFM nanomanipulation technique.

Scattering spectra of GNR on glass (black) and GNR on MoS; (red).
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Fig. S6. Scattering spectra of different GNRs coupling to WSe, via using the AFM nanomanipulation technique.
Scattering spectra of GNR on glass (black) and GNR on WSe; (red).

As we all know, the strong coupling occurs when the energy exchange between a quantum emitter (TMDCs)
and optical cavity (GNRs) is fast enough to overcome their respective dissipation rates. At first, we have analyzed
our experiment data. And the results indicated that the Rabi splitting is not large enough when the detuning
between plasmon and exciton energy is near zero. So it doesn’t rigorously satisfy the criterion for strong coupling.
For example, in fig. S6d, the resonant wavelength of the GNR is ~724 nm on the glass substrate. Considering of
the redshift ~18 £ 2 nm (from fig. S7) when the GNR was moved from the glass substrate onto the WSe2
monolayer, the detuning between the plasmon and exciton energy is near to zero. And the hybrid’s scattering
peak splitting & = 100 meV | the linewidth of GNR’s scattering spectrum I =194 meV (the GNRs employed in

this experiment have a larger size, about 110nmx50nm, so they have broader linewidth), the linewidth of

WSe,’s PL spectrum Lexciton = 45 meV (from fig. S2). Therefore, the results don’t rigorously satisfy the criterion (
Q> I+ l—‘exciton
2 ) for strong coupling.’> So we conclude that the interaction is near strong coupling regime but

not up to strong coupling regime.
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Fig. S7. Scattering spectra of different GNRs coupling to MoSe, via using the AFM nanomanipulation technique.

Scattering spectra of GNR on glass (black) and GNR on MoSe;, (red).
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Fig. S8. Redshifts of the scattering peak when the different GNRs (ten to twenty) were moved from the glass to

the TMDCs (blue dots for WS,, red dots for MoS,, purple dots for WSe,, and green dots for MoSe,) monolayer.
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Numerical simulation

The finite-difference time-domain (FDTD) method, a powerful technique for metallic nanostructures with
arbitrary geometries, is employed to calculate the optical responses. The individual gold nanorod is modeled as a
cylinder capped with hemispheres at each end that was placed on a TMDCs layer on top of a 500-nm-thick SiO,
layer. In addition, the nanorods with diameter ~ 50 nm and length ~120 + 10 nm are employed in the simulations.
The Drude—Lorentz dispersion model is used for the optical dielectrics of gold and the refractive indexes of the
dielectric media are set to 1.49 for silica, 1.0 for air, 1.33 for water, and 1.47 for glycerol. TMDC dielectric
functions contain real and imaginary parts.® And the thickness of the monolayer TMDCs is set to 1nm. The mesh

grid is set 0.2 nm for TMDCs region and 1nm for other regions.

S9



Backward

Forward <1028

1.2

(a)

Forward
0.8

0.6
0.4

Backward 0.2

x10%°

(a)

Forward

Backward

Fig. S9. Calculated the Far-field pattern of the GNR on the glass without and with the TMDCs in the upper and the
lower half-spaces using the FDTD method. (a) and (d) Schematic of the GNR on the bare glass and the GNR on the
TMDCs monolayer, respectively. (b) and (e) Backward far-field pattern of GNR without and with the TMDCs,

respectively. (c) and (f) Forward far-field pattern of GNR without and with the TMDCs, respectively.

Considering the modification of the scattering directivity, we have calculated the far-field pattern of the
GNR on the glass without and with the TMDCs in the upper and the lower half-spaces using the FDTD method.

The intensity ratio of GNR without and with the TMDCs was calculated by the relation,

2 pack - glass) LU pack - wse2)
ekl 21053 ry=— ekt 52379

1 = =
E(IFDT—glaSS) and Z(Tpor - wse2) , respectively. The presence of TMDCs with

high refractive indexes make the ratio between the scattered signal in the lower and the upper half-spaces

n-"n
=0.063

enhance about ~6.3%, which arises from T
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Fig. S10. (a) Distance dependence of the GNR-MoSe, scattering spectra. The minus distance defines the position
of GNR on glass, and the plus distance represents the position of GNR on TMDCs. The zero position represents
the boundary of the TMDCs. (b) The AFM topographic images during nanomanipulation corresponding to
scattering spectra in (a). The positions 1, 2, 3, 4, 5, 6 and 7 indicated the distance -0.43 um, -0.29 um, 0 um, 0.84

pum, 1.01 um, -1.10 um and 1.21 um, respectively.
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Fig. S11. (a) Distance dependence of the GNR-WSe, scattering spectra. (b) Scattering intensity (blue) and

scattering fitting line (purple) changes during the nanomanipulation. The minus distance defines the position of

GNR on glass, and the plus distance represents the position of GNR on TMDCs. The zero position represents the

boundary of the TMDCs.
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Fig. S12. (a) Distance dependence of the GNR-WSe, scattering spectra. (b) Scattering intensity changes during the
nanomanipulation. The minus distance defines the position of GNR on glass, and the plus distance represents the

position of GNR on TMDCs. The zero position represents the boundary of the TMDCs.
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Fig. S13. Scattering spectra under different excitation polarization angles. (a) Scattering spectra and (b) scattering

intensity of the GNR on the glass dependent on the excitation polarization. (b), (e) Scattering spectra and (d), (f)

scattering intensity of the GNR on WSe, monolayer dependent with the excitation polarization. HEB, high-energy

branch, the peak at the short wavelength. LEB, Low-energy branch, the peak at the long wavelength.
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Fig. S14. Calculated and experimental scattering spectra dependent on the orientation of the GNR on TMDCs
monolayer. (a) Calculated scattering spectra of GNR on WSe, using the FDTD method. (b), (c) Experimental
scattering spectra of GNR with different orientations on WSe, and MoS, monolayer, respectively. In the inset of

(b) and (c), the AFM (1), (2) and (3) correspond to orientations 1, 2 and 3 in the experimental data.
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Fig. S15. Scattering spectra of a single GNR on the monolayer WSe; in the air (black), water (red), and glycerol

(blue). The LSP resonance of GNR at 653 nm (a), 664nm (b), and 683 nm (c) on glass are shown by purple dot line.
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Fig. S16. Scattering spectra of a single GNR on a glass substrate without (a) and with the monolayer WSe, (b)

measured in air (red), water (blue), and glycerol (green). (c) Linear fitting the scattering intensity with slope ~ -

1.84 and ~-1.94, respectively.
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Line-shape fitting of the experimental spectra with the Fano model

The scattering cross-section spectra os(w) of a nanostructure supporting dark and bright modes can be

expressed in the following form’

Os(w) = 0, (W), (w) (1)
2 2
W -w
G———+q)?+b ,
ZWexwex a
I @) =——— T @) =
W - w5 w” - wpy
—|+1 —|+1
2W,,w,. , 2Wpl“’pl 2)
Here,wex and Wy are the resonant frequency and the half-width of resonance line at half-maximum of the

exciton. “»! and Wpl are the resonant frequency and the half-width of resonance line at half-maximum of the

plasmonic resonances. g is the Fano asymmetry parameter, b is the damping parameter originating from intrinsic

losses, a is the maximal amplitude of the resonance.
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Fig. S17. Scattering spectra (gray line) of GNR-WSe, monolayer fitted by Fano lineshape (green line). The curves 1
(blue dashed ones) correspond to Egs. (1) and (2), whereas the curves 2 (yellow dashed ones) are the additional

Lorentzian signals, which are caused by other surface plasmon resonances.’
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Fig. S18. Scattering spectra of GNR-WSe, monolayer in the air (black), water(red), and oil (blue) fitted by Fano
lineshape (purple line).

The “g” is the Fano asymmetry parameter. Commonly, the SPs have much stronger dipole moment compared
to excitons in TMDC monolayers, which causes |9l € 1ina plasmon—exciton system and the asymmetrical Fano
lineshapes are indistinguishable. When the dipole moment of the exciton subsystem (which depends on the
number of excitons) becomes comparable to that of SPs, i.e., |q|~1, more distinct asymmetrical Fano
lineshapes appear. 78 Firstly, the detuning between the plasmon and exciton energy is more significant when the
GNR-WSe2 in air. So the 4] < 1 because the plasmon-exciton interaction is weaker. Then the detuning between
the plasmon and exciton energy becomes smaller when the dielectric constant of the solvent increase. So the

plasmon-exciton interaction becomes stronger and the 4l is near to 1.
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Classical oscillator modeling

. . —-iw  t
mx =-yx-kx-eEye

In general, for an classical oscillator ( )°, the light scattering can be written as

2 2
Iseal@)~ 2 anA - 2 * r o 2 2 2
lw® - w; - 2ifwl where M m m wi=wj-p | (W~ i Wo > B ). X is the

displacement of the electron, ¥ is the damping rate, Eq and “ex are the electric field and resonant frequency of
the light wave. %o js the natural resonant frequency, B originates from intrinsic losses, A is the maximal
amplitude of the resonance. When the loss (B) of the oscillator system decreases, the linewidth of scattering

narrowed and the intensity increases, shown in the main text part (Fig. 5c).
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