Supplementary Information

Atomically-thin two-dimensional ZnSe/ZnSe(ea)_x Van der Waals nanojunction for synergistically enhanced visible light photocatalytic H₂ evolution

Huaibing Song^{a,#}, Yichen Yang^{a,#}, Zha Li^{b,#}, Min Huang^c, Jiaguo Yu^{d,*}, Yan Wu^{a,*}

^aEngineering Research Center of Nano-Geo Materials of Ministry of Education, Faculty of Materials
Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
^bSargent joint research center, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong
University of Science and Technology, Wuhan, 430074, China
^cFaculty of Physics and Electronic Sciences, Hubei University, Wuhan 430062, China
^dState Key Laboratory of Advanced Technology for Materials Synthesis and Processing
Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
^E-mail: <u>yujiaguo93@163.com</u>

AQE calculation

λ (nm)	H ₂ evolved(μ mol)	P*S (mW)	AQE (%)		
450	133.12	304	64.50		
500	84.88	510	22.00		
550	62.38	670	11.20		

Calculated AQE at different wavelength of ZnSe/ZnSe(ea)_x.

When λ = 450 nm:

$$N_{p} = \frac{P * S * t}{hc / \lambda} = \frac{304 \times 10^{-3} \times 3600 \times 450 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} = 2.48 \times 10^{20}$$
$$N_{e} = 2 \times M \times N_{A} = 2 \times 133.12 \times 10^{-6} \times 6.02 \times 10^{23} = 1.60 \times 10^{20}$$
$$AQE = \frac{N_{e}}{N_{p}} \times 100\% = 64.50\%$$

When λ = 500 nm:

$$N_{p} = \frac{P * S * t}{hc / \lambda} = \frac{510 \times 10^{-3} \times 3600 \times 500 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} = 4.64 \times 10^{20}$$
$$N_{e} = 2 \times M \times N_{A} = 2 \times 84.88 \times 10^{-6} \times 6.02 \times 10^{23} = 1.02 \times 10^{20}$$
$$AQE = \frac{N_{e}}{N_{p}} \times 100\% = 22.00\%$$

When λ = 550 nm:

$$N_{p} = \frac{P * S * t}{hc / \lambda} = \frac{670 \times 10^{-3} \times 3600 \times 550 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} = 6.70 \times 10^{20}$$
$$N_{e} = 2 \times M \times N_{A} = 2 \times 62.38 \times 10^{-6} \times 6.02 \times 10^{23} = 7.50 \times 10^{19}$$
$$AQE = \frac{N_{e}}{N_{p}} \times 100\% = 11.20\%$$

DFT calculation Details.

Our calculations are based on density functional theory (DFT) under the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional as implemented in the VASP code¹⁻³. A plane wave basis set with the projector-augmented plane wave (PAW) was performed to describe the ion-electron interaction and the plane-wave cutoff energy was set to be 500eV.⁴ The *k*-point mesh of $15\times15\times1$ were generated according to the Monkhorst-Pack scheme for monolayer ZnSe (1×1) cell.⁵ All the geometries were relaxed until the forces acting on each ion were smaller than 0.01 eV Å⁻¹, and the energy change was less than 10⁻⁵ eV. The Ethylamine was put on several different adsorption sites of ZnSe and ZnSe(ea)_x are computed based on the HSE06 functional.⁶

Supporting Tables

			Betermination of coo		••	
sample	Total Zn+Se	ZnSe(amine) _x /total Zn	non-coordinated	Coordinated	Weight loss	coordination
	Mass	Molar percentage (%)	ZnSe/ZnSe(amine) _x	ZnSe	Mass percentage	number x
	percentage(%)			/total Zn+Se	(%)	
				Mass ratio		
3-days&	86.97	13.06	6.67	0.15	13	3.19
amine=ea						
10-days&	87.38	12.62	6.92	0.14	14	3.61
Amine=ea						
6-days&	82.99	17.01	4.88	0.20	16	2.97
Amine=ea						
3 days&	75.14	24.86	3.02	0.33	22.77	2.17
amine=Pa						

Table S1 the Determination of coordination number.

Photocatalyst	H ₂ evolution rate	Light source	
	(µmol·h ⁻¹ ·g ⁻¹)	incident light	
Ball-milled black phosphorus (BP-BM) ²⁴	512	300W Xe lamp /	
		λ> 420 nm	
Amorphous red phosphorus/crystalline red	0.6/1.6	300W Xe lamp /	
phosphorus ²⁵		full spectrum	
mesoporous crystalline Si ²⁶	400	300W Xe lamp /	
		λ> 420 nm	
g- C_3N_4 /carbon nanodots ²⁷	105	300W Xe lamp /	
		λ > 420 nm	
Phosphorus-doped g- C ₃ N ₄ ²⁸	670	300W Xe lamp /	
		λ > 420 nm	
g-C ₃ N ₄ /S-Se-graphene ²⁹	2590	300W Xe lamp /	
		λ> 420 nm	
Oxygen-Doped ZnIn ₂ S ₄ nanosheets ³⁰	2120	300W Xe lamp /	
		λ> 420 nm	

Table S2. H_2 evolution rates of some representative photocatalysts without using any cocatalyst.

Supporting Figures

Figure S1. (A) XRD pattern and (B) Projection Se crystal structure along the z-axis.

Figure S2. The XRD pattern of 2D/2D ZnSe/ZnSe(ea)_x VDW nanojunction and pure 2D ZnSe nanosheets.

Figure S3. SEM images of 2D/2D ZnSe/ZnSe(ea)_x (A) 2D/2D ZnSe/ZnSe(pa)_y, (B) 2D/2D ZnSe/ZnSe(ha)_z, (C) and 2D ZnSe sample (D).

Figure S4. High-resolution XPS spectra of Zn 2p , Se 3d , N 1s in 2D/2D ZnSe/ZnSe(ea)_x (A-C), 2D/2D ZnSe/ZnSe(pa)_y (D-F), 2D/2D ZnSe/ZnSe(ha)_z (G-I).

Figure S5. High-resolution XPS spectra of Zn 2p, Se 3d, N 1s in ZnSe/ZnSe(ea)_x samples attained after different reaction days (A-C, 3-days, D-F, 6-days, G-I, 10-days).

Figure S6. The calculated DOS for $ZnSe(ea)_x$. DOS=density of states.

Figure S7. UPS spectrum of pure 2D ZnSe.

References

- 1 J. P. Perdew, K. Burke, M. Ernzerhof, *Phys Rev Lett*, 1996, **77**, 3865.
- 2 G. Kresse, J. Hafner, *Phys Rev B*, 1993, **47**, 558.
- 3 G.Kresse, J. Furthmüller, *Phys Rev B*, 1996, **54**, 11169.
- 4 G. Kresse, D. Joubert, *Phys Rev B*, 1999, **59**, 1758.
- 5 H. -J. Monkhorst, J. -D. Pack, Phys Rev B, 1976, 13, 5188.
- 6 J. Heyd, G. -E. Scuseria, M. Ernzerhof, *J. Chem. Phys*, 2003, **118**, 8207.