Supporting Information for

High-density Surface Protuberances Endow Ternary PtFeSn

Nanowires with High Catalytic Performance for Efficient Alcohol

Electrooxidation

Cheng Wang,^a Hui Xu,^a Fei Gao,^a Yangping Zhang,^a Tongxin Song,^a Caiqin Wang,^{b*} Hongyuan Shang,^a Xing Zhu,^c Yukou Du ^{a*}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China

^b College of Science & Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China

^c Testing and Analysis Center, Soochow University, Suzhou, 215123, P.R. China.

* Corresponding author: Tel: 86-512-65880089, Fax: 86-512-65880089;

E-mail: duyk@suda.edu.cn (Y. Du), wangcaiqin@njfu.edu.cn (C. Wang).

Supporting Figures and Tables

Fig. S1 (a) The TEM image, (b) SEM-EDS spectrum, (c) XRD pattern and (d) XPS pattern of the PtFe NWs.

Fig. S2 XRD patterns of PtFeSn and PtFe NWs.

Fig.S3 TGA curve of PtFeSn NWs.

Fig. S4 XRD patterns of $Pt_1Fe_{0.20}Sn_{0.46}$, $Pt_1Fe_{0.17}Sn_{0.13}$ and $Pt_1Fe_{0.23}Sn_{0.73}$ NWs.

Fig. S5 (a, b) The TEM images of PtFeSn NPs.

Fig. S6 (a, b) The TEM images of PtSn NPs.

Fig. S7 The mass and specific activities of different catalysts operated in 0.1 M HClO₄ + 0.5 M C_2H_5OH solution.

Fig. S8 CV curves of (a) $Pt_1Fe_{0.17}Sn_{0.13}$ NWs, (b) $Pt_1Fe_{0.23}Sn_{0.73}$ NWs, (c) PtFe NWs and (d) commercial Pt/C for the EOR over 500 cycles.

Fig. S9 (a) CV curves of different catalysts operated in 0.1 M HClO₄ + 0.5 M C_2H_5OH solution. (b) CV curves of the PtSn NPs for the EOR over 500 cycles.

Fig. S10 (a) CV curves of different catalysts operated in 0.1 M HClO₄ + 0.5 M C_2H_5OH solution. (b) CV curves of the PtFeSn NPs for the EOR over 500 cycles.

Fig. S11 Nyquist plot of commercial Pt/C operated in the solution of 0.1 M HClO₄ + $0.5 \text{ M C}_2\text{H}_5\text{OH}$ at the potential of 0.25 V.

Fig. S12 The TEM images of (a) $Pt_1Fe_{0.17}Sn_{0.13}$ NWs/C, (b) $Pt_1Fe_{0.20}Sn_{0.46}$ NWs/C, (c) $Pt_1Fe_{0.23}Sn_{0.73}$ NWs/C and (d) PtFe NWs/C before electrochemical durability test.

Fig. S13 The TEM images of (a) $Pt_1Fe_{0.17}Sn_{0.13}$ NWs/C, (b) $Pt_1Fe_{0.20}Sn_{0.46}$ NWs/C, (c) $Pt_1Fe_{0.23}Sn_{0.73}$ NWs/C and (d) PtFe NWs/C after 500 cycles in 0.1 M HClO₄ + 0.5 M C₂H₅OH solution at 50 mV s⁻¹.

Fig. S14 SEM-EDS of $Pt_1Fe_{0.17}Sn_{0.13}$ NWs, (b) $Pt_1Fe_{0.20}Sn_{0.46}$ NWs and (c) $Pt_1Fe_{0.23}Sn_{0.73}$ NWs after 500 cycles in 0.1 M HClO₄ and 0.5 M C₂H₅OH at 50 mV s⁻¹.

Fig.S15 XPS patterns of $Pt_1Fe_{0.20}Sn_{0.46}$ NWs. (a) Pt 4f, (b) Fe 2p and (c) Sn 3d of PtFeSn NWs after 500 cycles in 0.1 M HClO₄ and 0.5 M C₂H₅OH at 50 mV s⁻¹.

Catalysts	Peaks currents from	Electrolyte	References
	CV curves J _m		
	(A/mg)		
Pt1Fe0.20Sn0.46	1.21	0.1 M HClO ₄ +	This work
NWs		0.5 M C ₂ H ₅ OH	
Pt-NiO/C2	0.64	0.5 M H ₂ SO ₄ +	J. Power Sources 2015,
NPs		1 M C ₂ H ₅ OH	278, 119-127.
Au ₂ Pt ₁ NWNs	0.57	0.5 M H ₂ SO ₄ +	Int. J. Hydrogen Energy
		0.5 M C ₂ H ₅ OH	2016 , <i>41</i> , 21, 8871-8880.
Pt/MV-RGO-	0.44	0.5 M H ₂ SO ₄ +	Electron. Mater. Lett
СН		1.3 M C ₂ H ₅ OH	2018 , <i>14</i> , 616-628.
Pt ₉₄ Zn ₆ NWs	0.40	0.1 M HClO ₄ +	Nano. Res 2019, 12, 5,
		0.2 M C ₂ H ₅ OH	1173-1179.
Pt-Sn-Ce/C	0.38	0.5 M H ₂ SO ₄ +	Appl. Catal. B-Environ
(50:20:30)		0.5 M C ₂ H ₅ OH	2015 , <i>165</i> , 176-184.
Pt/C-Cu3P	0.41	0.5 M H ₂ SO ₄ +	Electrochim. Acta 2016,
50%		1 M C ₂ H ₅ OH	220, 193-204.
networked	1.08	0.1 M HClO ₄ +	J. Mater. Chem. A 2017,
Pt ₆ Sn ₃ NWs		0.5 M C ₂ H ₅ OH	5, 24626–24630.

Table S1. Comparison of $Pt_1Fe_{0.20}Sn_{0.46}$ NWs with other Pt-based electrocatalysts for the EOR.

Catalysts	Peaks currents from	Electrolyte	References
	CV curves J _m		
	(A/mg)		
Pt1Fe0.20Sn0.46	1.49	0.1 M HClO ₄ +	This work
NWs		0.5 M CH ₃ OH	
Pt ₉₄ Zn ₆ NWs	0.51	0.1 M HClO ₄ +	Nano. Res 2019, 12, 5,
		0.2 M CH ₃ OH	1173-1179.
Pt/graphene-	0.42	0.5 M H ₂ SO ₄ +	J. Power Sources 2015,
TiO ₂ -40%		0.5 М CH ₃ OH	279, 210-217.
Pt/C/GA	0.41	0.5 M H ₂ SO ₄ +	Electrochim. Acta 2016,
		0.5 M CH ₃ OH	<i>189</i> , 175-183.
Pt-MoO ₃ -	0.81	0.5 M H ₂ SO ₄ +	J. Mater. Chem. A 2016,
RGO HNRAs		0.5 М CH ₃ OH	4, 1923–1930.
Pt/Ti _{0.95} Fe _{0.05}	0.72	0.5 M H ₂ SO ₄ +	Int. J. Hydrogen Energy
N NTs		1.0 M CH ₃ OH	2018 , <i>43</i> , 20, 9777-9786.
Pt/N-	0.86	0.5 M H ₂ SO ₄ +	Int. J. Hydrogen Energy
CNTs@TiNiN		1.0 M CH ₃ OH	2018 , <i>43</i> , 50, 22519-
			22528.
Pt/SPG	1.13	0.5 M H ₂ SO ₄ +	Electrochim. Acta 2018,
		0.5 M CH ₃ OH	285, 202-213.

Table S2. Comparison of $Pt_1Fe_{0.20}Sn_{0.46}$ NWs with other Pt-based electrocatalysts for the MOR.