Supplementary Information

Intentional Construction of High-Performance SnO₂ Catalysts with 3D Porous Structure for Electrochemical Reduction of CO₂

Xinxin Zhang, ^{a, b} Zhipeng Chen, ^{a, b} Kaiwen Mou,^{a, b} Mingyang Jiao,^a Xiangping Zhang,^{c, d} and Licheng Liu*^{a,d}

- a CAS Key Laboratory of Bio-based Materials
 Qingdao Institute of Bioenergy and Bioprocess Technology
 Chinese Academy of Sciences, Qingdao 266101, Shandong, China.
 E-mail: liulc@qibebt.ac.cn
- b University of Chinese Academy of Sciences Beijing 100049, China.
- c Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- d Dalian National Laboratory for Clean Energy Dalian 116023, China.

Figure S1. SEM images of $ZnSn(OH)_6$ (a), Zn_2SnO_4/SnO_2 (b), SnO_2-NCs (c), SnO_2-NFs (d) and SnO_2-NPs (e).

Figure S2. TEM images of $ZnSn(OH)_6$ (a), Zn_2SnO_4/SnO_2 (b), SnO_2-NCs (c, d), SnS_2 (e, f), SnO_2-NFs (g, h).

Figure S3. SEM image of SnO₂-*NFs*.

Figure S4. HRTEM images and the corresponding SAED patterns of SnO_2 -*NCs* (a, b) and SnO_2 -*NFs* (c, d).

Figure S5. Contact angle of SnO₂-*NCs* and SnO₂-*NFs* samples.

The contact angles of SnO_2 -*NCs* and SnO_2 -*NFs* samples with 0.5M KHCO₃ electrolyte (3µL) were illustrated in Figure S5, indicating that the samples have the excellent wettability. Before the test, ~100mg of the SnO₂ sample powder was extruded by tablet press machine to ensure that the test surface was smooth and flat.

Figure S6. The Sn 3d (a) and survey (b) XPS spectra of SnO_2 -*NCs* and SnO_2 -*NFs* after long-term electrolysis experiments.

Figure S6 gives the typical Sn 3d XPS spectra of SnO_2 -*NCs* and SnO_2 -*NFs* after long-term electrolysis experiments. All samples reveal two major fitting peaks with binding energies at 495.1 eV and 486.7 eV, which could be assigned to Sn 3d_{3/2} and 3d_{5/2}, respectively, and clearly confirms the Sn(IV) oxidation state of SnO₂.¹⁻⁵

Figure S7. SEM-EDX elemental mapping images of SnO_2 -NCs (a) and SnO_2 -NFs (b); and the corresponding weight contents of the elements in SnO_2 -NCs (c) and SnO_2 -NFs (d).

SEM-EDX elemental mapping images of SnO₂-NCs and SnO₂-NFs are shown in

Figure S7. The actual distribution of Sn, Zn, O, and S elements clearly identifies. To obtain more convincing results, ICP experiment has been carried out with emphasize on Zn concentration. According to ICP results, Zn concentration is 0.22 wt. % for SnO₂-*NCs* and 0.46 wt. % for SnO₂-*NFs*, respectively.

Figure S8. Faradaic efficiencies of Zn_2SnO_4/SnO_2 (a) and SnS_2 (b) catalysts at different electrolytic potentials.

Figure S8b is Faradaic efficiencies of HCOO⁻, CO and H₂ at different electrolytic potentials on SnS_2 (the precursor of SnO_2 -*NFs*, before desulfurization) sample, which shows poor performance on CO₂RR compared to SnO_2 -*NFs* samples. Therefore, the activity of the electrocatlaysts is most likely from SnO_2 .

Table S1. Comparison of electrocatalytic activity for electrochemical reduction of

Catalysts	Overpoten tial (V vs. RHE)	FE (%)	Current density (mA cm ⁻²)	Ref.
Sn/SnO _x Thin Film	-0.7	~97.0 C1 ^[a] ~41.0 HCOO ⁻	-	2012 J. Am. Chem. Soc. ⁶

CO₂ to formate on Sn-based electrodes in an aqueous electrolyte.

nano-	-1.8	>93.0	$10.2 (j_{total})$	2014
SnO ₂ /graphene	V vs. SCE			J. Am. Chem.
				Soc. ⁷
Sn-pNWs	-0.8	~80.0	4.8 (j _{HCOO} -	2017
With grain)	Angew. Chem. ¹
boundaries				0
Mesoporous SnO ₂ -	~-0.97	87±2	$50 (j_{\text{total}})$	2017
NSs/CC		HCOO-	$45 (j_{\rm HCOO})$	Angew. Chem. ⁸
			for theory	
SnS ₂ derived Sn on	-0.68	84.5	11.8	2017
rGO	0.00	01.5	(j _{HCOO} ⁻)	Nano Energy ⁹
100			VHCOO)	Italio Eller gy
Sn/CNT-Agls	-0.96	82.7	32.9 (j _{total})	2017
Sh/CIVI-Agis	-0.70	02.7	26.7	J. Mater. Chem.
				J. Mater. Chem. A^{10}
SnOx@MWCNT-	-1.25	~100 C1	$(j_{\rm HCOO})$	2019
COOH	-1.25 V <i>vs</i> . SHE		9.6 (j_{total})	2019 ChemSusChem ¹
COOR	V VS. SHE	77.0		ChemSusChem ¹
Sa OH 5 0 harrish sa	1.6	(HCOO^{-})	17(:)	
Sn-OH-5.9 branches	-1.6	93.1 C1	$\sim 17 (j_{\text{total}})$	2019
	V vs.	82 (HCOO ⁻)	10.7	J. Am. Chem.
	Ag/AgCl		(j _{HCOO} -)	<i>Soc.</i> ¹²
ultra-small SnO ₂ -	-1.21	80.0 C1	145 (j_{total})	2018
NPs		64.0(HCOO ⁻		J. Mater. Chem.
(< 5 nm))		A ¹³
Sn-CNT40/ESGDEs	-1.7	69.84 ± 2.41	$34.21 \pm$	2018
	V vs.		1.14	J. CO_2 Util. ¹⁴
	Ag/AgCl			
PdSn/C	-0.43	99	-	2017
				Angew. Chem. ¹⁵
1D SnO ₂ WIT	-0.89 ~ -	93.0 C1	-	2018
	1.29	70.0		Adv. Funct.
		(HCOO ⁻)		Mater. ¹⁶
SnO/C (2.6 nm)	-0.86	~97.0 C1	~28.5	2018
		~70.0	(j_{total})	Angew. Chem. ⁴
		(HCOO ⁻)	~20.0	
		× /	(j _{HCOO} -)	
mesoporous SnO ₂	-1.15	75.0	$10.8 (j_{total})$	2018
	-		$8.2(j_{\rm HCOO})$	ACS
			viie00)	Sustainable
				Chem. Eng. ¹⁷
TNS-2.0-SnO ₂	-1.6	73.0	11	2018
	1.0	15.0		Adv. Energy
				Mater. ¹⁸
				muler.

~ ~ ~		000	1.5/-	• • • • •
mesoporous-SnO ₂	-0.9	83.0	16(<i>j</i> _{HCOO} ⁻)	2019
				J. Mater. Chem.
				A ¹⁹
urchin-like SnO ₂	-1.0	62.0	-	2017
	V vs. SHE			Electrochim.
				Acta ²⁰
heat-treated Sn	-1.36	71.6	-	2015
dendrite				ChemSusChem ²
				1
Sn quantum sheets	-1.8	89.0	21.1 (j _{total})	2016
confined in	V vs. SCE		y total)	Nat. Commun. ²²
graphene				
CuOy/SnOx-CNT-	-1.09	79.0	6.2 (j _{HCOO} -	2017 ACS Appl.
#12	1.09	19:0)	Mater.
π12)	Interfaces ²³
Sub Sum SuO /C	0.0	76 C1	5 1(;)	2018
Sub-5nm SnO ₂ /C	-0.9		$5.1 (j_{total})$	
		54 (HCOO ⁻)	3.7 (<i>j</i> _{HCOO} -	J. Mater. Chem.
)	A ²⁴
5 atm% Ni-doped	-0.9	93 C1	19.6	2018
SnS ₂ nanosheets		80 (HCOO ⁻)		Angew. Chem. ²⁵
bimetallic Bi-Sn	-1.14	96 (HCOO ⁻)	-	2018
catalyst				Adv. Energy
				Mater. ²⁶
SnO ₂ /0.14@N–rGO	-0.8	89 C1	21.3 (j _{total})	2018
- 0			0 •••••••	Appl. Catal. B:
				Environ. ⁵
Au-Sn bimetallic	-0.9	51(HCOO ⁻)	_	2019
nanoparticles	•••	()		ACS Energy
nunopur tieres				Lett. ²⁷
SnO ₂ -NCs	-1.0	82.4 C1	$12.1(j_{total})$	This work
51102-1105	1.0	72.6	9.4 $(j_{\rm HCOO}^{-12.10})$	THIS WOLK
SnO MEr	1.0	(HCOO^{-}))	This month
SnO ₂ -NFs	-1.0	91.5 C1	$12.9(j_{total})$	This work
		82.1	10.3	
		(HCOO ⁻)	(j _{HCOO} -)	

[a]: C1 represents the production of HCOO⁻ and CO.

Figure S9. Total current density (a), partial (j_{HCOO^++CO}) current density (b) and ECSAnormalized current densities (c, d) of SnO₂-*NCs*, SnO₂-*NFs* and SnO₂-*NPs*.

Figure S10. CV scans under different scan rates for SnO_2 -*NCs* (a), SnO_2 -*NFs* (b), and SnO_2 -*NPs* (c).

The ECSAs of SnO₂-*NCs*, SnO₂-*NFs* and SnO₂-*NPs* electrocatalysts were evaluated by the electrochemical double-layer capacitance (Cdl), which was obtained from the

CVs (Figure S10) at different scan rates. CV measurement were performed from -0.3 to -0.4 V (*vs.* Ag/AgCl) to ensure that the location of redox peak is avoided.

Figure S11. SEM images of the SnO_2 -*NCs*/CC (a) and SnO_2 -*NFs*/CC (b, c) electrode after long-term stability measurements; and freshly prepared SnO_2 -*NPs*/CC (d) electrode before electrochemical test.

As shown in Figure S11, the freshly prepared SnO_2 -*NPs*/CC electrode showed severe agglomeration before electrochemical test. In sharp contrast, the structure of SnO_2 -*NCs*/CC and SnO_2 -*NFs*/CC can be preserved to some extent after long-term stability measurements, indicating the efficient buffering effect of the 3D structure in electrolysis.

Table S2. Faradaic efficiencies of HCOO⁻, CO, H₂ production and the total current density for the catalyst of SnO_2 -*NC_s*, SnO_2 -*NFs* and SnO_2 -*NPs* at low electrolytic potentials (-0.7 V *vs.* RHE).

catalyst	FE _{HCOO} -	FE _{CO}	FE _{H2}	$\dot{J}_{ m total}$
SnO ₂ -NCs	24.1	9.4	62.0	3.9

SnO ₂ -NFs	40.5	42.9	20.2	3.6
SnO ₂ - <i>NPs</i>	23.8	30.9	42.0	3.2

References

- B. Kumar, V. Atla, J. P. Brian, S. Kumari, T. Q. Nguyen, M. Sunkara and J. M. Spurgeon, Angew. Chem. Int. Ed., 2017, 129, 1-6.
- 2. Y. Zeng, J. Luo, Y. Wang, L. Qiao, B. Zou and W. Zheng, Nanoscale, 2017, 9, 17576-17584.
- S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang and X. W. D. Lou, *Angew. Chem. Int. Ed.*, 2019, 58, 8499-8503.
- 4. J. Gu, F. Heroguel, J. Luterbacher and X. Hu, Angew. Chem. Int. Ed., 2018, 57, 2943-2947.
- 5. B. Zhang, Z. Guo, Z. Zuo, W. Pan and J. Zhang, *Appl. Catal.*, *B*, 2018, **239**, 441-449.
- 6. Y. Chen and M. W. Kanan, J. Am. Chem. Soc., 2012, **134**, 1986-1989.
- 7. S. Zhang, P. Kang and T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 1734-1737.
- F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane and J. Zhang, *Angew. Chem. Int. Ed.*, 2017, 56, 505-509.
- 9. F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D. R. MacFarlane and J. Zhang, *Nano Energy*, 2017, **31**, 270-277.
- 10. Z. Chen, S. Yao and L. Liu, J. Mater. Chem. A, 2017, 5, 24651-24656.
- 11. J. Qiao, Q. Zhang, Y. Zhang, J. Mao, J. Liu, Y. Zhou and D. Guay, ChemSusChem, 2019.
- 12. W. Deng, L. Zhang, L. Li, S. Chen, C. Hu, Z. J. Zhao, T. Wang and J. Gong, *J. Am. Chem. Soc.*, 2019, **141**, 2911-2915.
- C. Liang, B. Kim, S. Yang, Y. L. Yang Liu, C. Francisco Woellner, Z. Li, R. Vajtai, W. Yang, J. Wu, P. J. A. Kenis and Pulickel M. Ajayan, *J. Mater. Chem. A*, 2018, 6, 10313-10319.
- 14. Q. Wang, X. Wang, C. Wu, Y. Cheng, Q. Sun and H. Yu, J. CO₂ Util., 2018, 26, 425-433.
- X. Bai, W. Chen, C. Zhao, S. Li, Y. Song, R. Ge, W. Wei and Y. Sun, *Angew. Chem. Int. Ed.*, 2017, 56, 12219-12223.
- 16. L. Fan, Z. Xia, M. Xu, Y. Lu and Z. Li, Adv. Funct. Mater., 2018, 28, 1706289.
- 17. R. Daiyan, X. Lu, W. H. Saputera, Y. H. Ng and R. Amal, *ACS Sustainable Chem. Eng.*, 2018, **6**, 1670-1679.
- P. Han, Z. Wang, M. Kuang, Y. Wang, J. Liu, L. Hu, L. Qian and G. Zheng, *Adv. Energy Mater.*, 2018, 8, 1801230.
- N. Han, Y. Wang, J. Deng, J. Zhou, Y. Wu, H. Yang, P. Ding and Y. Li, J. Mater. Chem. A, 2019, 7, 1267-1272.
- Y. Liu, M. Fan, X. Zhang, Q. Zhang, D. Guay and J. Qiao, *Electrochim. Acta*, 2017, 248, 123-132.
- H. Won da, C. H. Choi, J. Chung, M. W. Chung, E. H. Kim and S. I. Woo, *ChemSusChem*, 2015, 8, 3092-3098.

- 22. F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu, L. Liang, T. Yao, B. Pan, S. Wei and Y. Xie, *Nat. Commun.*, 2016, 7, 12697.
- 23. S. Huo, Z. Weng, Z. Wu, Y. Zhong, Y. Wu, J. Fang and H. Wang, *ACS Appl. Mater. Interfaces*, 2017, **9**, 28519-28526.
- 24. Y. Yiliguma, Z. Wang, C. Yang, A. Guan, L. Shang, A. M. Al-Enizi, L. Zhang and G. Zheng, *J. Mater. Chem. A*, 2018, **6**, 20121-20127.
- 25. A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu and J. Zeng, *Angew. Chem. Int. Ed.*, 2018, **57**, 10954–10958.
- G. Wen, D. U. Lee, B. Ren, F. M. Hassan, G. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z. Bai,
 L. Yang and Z. Chen, *Adv. Energy Mater.*, 2018, 8, 1802427.
- 27. A. M. Ismail, G. F. Samu, Á. Balog, E. Csapó and C. Janáky, ACS Energy Letters, 2018, 4, 48-53.