Supporting Information

Plasmonic hot electron transfer in anisotropic Pt-Au nanodisks boosting electrochemical reaction in visible-NIR region

Guanying Chen, Mingjuan Sun, Juan Li, Mingshan Zhu, Zaizhu Lou and Baojun Li

Institute of Nanophotonics, Jinan University, Xingye Avenue East 855, Guangzhou 511443, China

School of Environment, Jinan University, Xingye Avenue East 855, Guangzhou 511443, China

Fig. S1. TEM image of Au triangular nanoprisms

Fig. S2. Size distribution diagram of different Au NDs.
Fig. S3. UV-visible extinction spectra of Au triangular nanoprisms.

Fig. S4. Au ND, Pt-edged Au ND and Pt NF modes for FDTD simulations.

Fig. S5. Methanol electrocatalytic oxidization CVs over Au NDs on visible-NIR light and in dark.
Fig. S6. TEM images (a-d) of Au NDs with different sizes of 70, 66, 57 and 54 nm, respectively, and their extinction spectra (e).

Fig. S7. TEM images (a-d) of Pt-edged Au NDs synthesized by Au NDs with different sizes of 70, 66, 57 and 54 nm, respectively, and their extinction spectra (e).
Fig. S8. FDTD simulated plasmon-induced electrical field around Au NDs with different sizes.

Fig. S9. FDTD simulated plasmon-induced electrical field around Pt-edged Au NDs with different sizes.
Fig. S10. Methanol electrocatalytic oxidization CV over different catalysts of Pt-edged Au NDs with different size 70 (a), 66 (b), 57 (c) and 54 nm (d), respectively, under visible-NIR light and dark condition.

Fig. S11. Methanol oxidization CV peak current density (a) and normalized current density (b) over Pt-edged Au NDs synthesized by Au NDs with different sizes of 75, 70, 66, 57 and 54 nm, respectively, under Visible-NIR light and dark.
Fig. S12. Methanol oxidization CV peak current density normalized current density over Pt-edged Au NDs synthesized by Au NDs with different sizes of 75, 70, 66, 57 and 54 nm, respectively, under Visible-NIR light and dark.

Fig. S13. Single-particle PL spectra of Au ND corresponding to number 7 of Fig. 5a