Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supporting Information

For

Transformable nanoparticles triggered by cancer-associated fibroblasts for improving drug permeability and efficacy in desmoplastic tumor

Lin Hou ^{a, b, c, e}, Dandan Chen ^{a, d, #}, Lisha Hao ^{a, d, #}, Chunyu Tian ^{a, d}, Yingshan Yan ^{a, d}, Ling Zhu ^{a, b, c}, Huijuan Zhang ^{a, b, c,*}, Yi Zhang ^{e, *}, Zhenzhong Zhang ^{a, b, c,*}

^a School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China

^b Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province

^c Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province,

Zhengzhou, China

^d Modern Analysis and Computer Center of Zhengzhou University

^e Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China

*Corresponding Author: Email address: zhanghuijuan4@163.com (Huijuan Zhang), yizhang@zzu.edu.cn (Yi Zhang), zhangzz_pharm@163.com (Zhenzhong Zhang); #These authors contributed equally.

Figure S1. UV-vis absorption spectra of PAMAM, DOX and DOX-ss-PAMAM.

Figure S2. Cell inhibition rates of different treatments on PC-3 cells at 72 h (n=6). *P<0.05, **P<0.01, ***P<0.001

Figure S3. The level of GSH in CAFs and PC-3 (*n*=3). **P*<0.05, ***P*<0.01, ****P*<0.001

Figure S4. Cell inhibition rates of different treatments on CAFs at 24 h (*n*=6). **P*<0.05, ***P*<0.01, ****P*<0.001

Figure S5. The expression of FAP- α in CAFs and PC-3 cells (*n*=3). **P*<0.05, ***P*<0.01, ****P*<0.001

Figure S6. The cellular uptake analyzed by confocal microscopy at 1 h: a) free DOX, b) HA@DSP, and c) HA@DSP-pep-DSP.