Electronic Supplementary Material

## Construction of CPs@MnO2-AgNPs as multifunctional nanosensor

## for glutathione sensing and cancer theranostic

Qi Wang<sup>a,b</sup>, Chunyan Wang<sup>b</sup>, Xiaodong Wang<sup>a</sup>, Yuan Zhang<sup>a</sup>, Yuehuan Wu<sup>b</sup>, Chuan Dong<sup>a</sup> and

## Shaomin Shuang<sup>a,\*</sup>

<sup>a</sup> College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China

<sup>b</sup> Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, 030008, PR China

\*Corresponding author: smshuang@sxu.edu.cn (S. Shuang).



Fig. S1 Size distribution of as-prepared CPs.



Fig. S2 Size distribution of as-prepared CPs@MnO<sub>2</sub> nanocomposite.



Fig. S3 SEM images of (A) CPs and (B) CPs@MnO<sub>2</sub> nanocomposite. EDS patterns of (C) CPs and (D) CPs@MnO<sub>2</sub> nanocomposite.



Fig. S4 The N<sub>2</sub> adsorption/desorption isotherms and pore-size distribution curve (inset) of as-

prepared CPs@MnO2 nanocomposite.



Fig. S5 Size distribution of as-prepared AgNPs.



Fig. S6 The ninhydrin chromogenic reaction photos of CPs@MnO2 before and after APTES

capping.



Fig. S7 The stability of CPs@MnO<sub>2</sub> (A) in different concentrations of KCl and (B) at different

storage times.



Fig. S8 The fluorescence emission spectrum of AgNPs. Inset: the photograph of AgNPs under UV

light illumination.



Fig. S9 The overlay of fluorescent excitation spectrum of Ag NPs and absorption spectrum of

CPs@MnO<sub>2</sub>.



Fig. S10 Time-resolved fluorescence decay spectra at 630 nm from AgNPs, CPs@MnO<sub>2</sub>-AgNPs



Fig. S11 Stern-Volmer plot describing the response of  $F_0/F$  to the CPs@MnO<sub>2</sub> nanocomposite concentration.  $F_0$  is the fluorescence intensity of AgNPs, and F is the fluorescence intensity of AgNPs in the presence of CPs@MnO<sub>2</sub> nanocomposite.



Fig. S12 The fitting curve of the absorbance of (A) CPs and (B) CPs@MnO<sub>2</sub> aqueous dispersions

at 808 nm as a function of concentrations.



Fig. S13 Viability of SMMC-7721 cells after incubation with different concentrations of AgNPs for 24h.

| Species                         | $\tau_1(ns)$ | $\tau_2(ns)$ | <b>B</b> <sub>1</sub> (%) | <b>B</b> <sub>2</sub> (%) | $\chi^2$ | $	au_{ave}(ns)$ |
|---------------------------------|--------------|--------------|---------------------------|---------------------------|----------|-----------------|
| AgNPs                           | 0.33         | 3.91         | 67.68                     | 32.32                     | 1.176    | 1.49            |
| CPs@MnO <sub>2</sub> -AgNPs     | 0.21         | 2.36         | 41.67                     | 58.33                     | 1.177    | 1.46            |
| CPs@MnO <sub>2</sub> -AgNPs+GSH | 0.22         | 2.40         | 42.47                     | 57.53                     | 1.173    | 1.47            |

 Table S1 Parameters of multi-exponential fits to the fluorescence decay.

Table S2 Comparison of present method with reported methods.

| Method                                    | Detection limit (µM) | Linear range (µM) | Ref.      |
|-------------------------------------------|----------------------|-------------------|-----------|
| Eu <sup>3+</sup> encapsulated carbon dots | 0.05                 | 0-50              | 7         |
| Polydopamine NPs-MnO <sub>2</sub>         | 1.5                  | 0-350             | 8         |
| Upconversion NPs-MnO <sub>2</sub>         | 0.9                  | Not given         | 10        |
| Carbon dots-MnO <sub>2</sub>              | 0.3                  | 1-10              | 14        |
| Carbon dots-MnO <sub>2</sub>              | 0.6                  | 1-200             | 16        |
| Carbon dots-MnO <sub>2</sub>              | 0.022                | 0.2-600           | 17        |
| Iridium(III) complex-MnO <sub>2</sub>     | 0.13                 | 1-200             | 18        |
| CPs@MnO <sub>2</sub> -AgNPs               | 0.55                 | 0.8-80            | This work |