Supplementary Information

Nanoparticles decorated with granulocyte-colony stimulating factor for targeting myeloid cells

Katherine Margulis,^{‡a,b} Alexander Honkala,^{‡c} Irina Kalashnikova,^d Sarah E. Noll,^a Meghan Hill^d, Richard N. Zare^{*a} and Bryan R. Smith^{*c,d}

^a Department of Chemistry, Stanford University, Stanford, CA, 94305, USA

^b The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112192, Israel

^c Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA

^d Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824

[‡] These authors contributed equally

*Email: zare@stanford.edu; smit2901@msu.edu

Fig. S1. Cytotoxicity studies for ICG-loaded NPs. (A) MTT assay. No statistical difference in cytotoxic effects of conjugated and unconjugated NPs on macrophages were detected within the 0.05-100 ng/ml concentration range by T-test. (B) Proliferation assay. Negative control with cycloheximide showed decreased proliferation; (C) Live/dead cell analysis by flow cytometry. Cell viability was compared to untreated cells (in PBS) and heat-treated cells.

For the methods used in these studies, please see the main text Experimental/ Toxicity tests.

Figure S2: Gating Strategy for Figure 5 Data.

Figure S3. Gating Strategy for Figure 6 Data.