Electronic Supplementary Information

Hydrothermal Synthesis of Polydopamine functionalized Cobalt doped Lanthanum Nickelate Perovskite Nanorod for Efficient Water Oxidation in Alkaline Solution

Yujie Han^{a,1}, Zhijun Zhu^{c,1}, Liang Huang^b, Yujing Guo^a, Yanling Zhai^{c*} and Shaojun Dong^{b*}

^a Institute of Environmental Science, Shanxi University, Taiyuan 030006 (China)
^bState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 (China)
^cDepartment of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071 (China)
¹These authors contributed equally to this work.

These dutions contributed equally to this work.

E-mail: dongsj@ciac.ac.cn (S.D.); zhaiyanling@qdu.edu.cn (Y.Z.)

Fig. S1 SEM and TEM images of PDA/La₅Ni₃Co_{2-500N} before (A, B) and after (C, D) 1000 CV cycles in 1.0 M KOH.

Fig. S2 XPS spectra of PDA/Co₂-La₅Ni₃O_{3-x-500N} before and after durability test (A), deconvoluted XPS spectra of Ni 2p (B) and Co 2p (C).

Fig. S3 XPS spectra of O 1s (A), N 1s (B), Ni 2p (C), Co 2p (D) on the surface of $PDA/La_5Ni_3Co_{2-500N}$ after 1000 CV cycles in 1.0 M KOH.

Fig. S4 Cyclic voltammograms (A, C and E) and corresponding linear fitting curves between current density and scan rate (B, D and F) of PDA/L₅N₃C_{2-500N} (A and B), PDA/L₅N₃C_{2-600N} (C and D), and PDA/L₅N₃C_{2-700N} (E and F) in the non-Faradaic capacitance current range at scan rates from 2 to 10 mV·s⁻¹.

Fig. S5 Faradaic efficiency testing of PDA/La₅Ni₃Co_{2-500N} for OER using RRDE measurements; ring current curve on a RRDE (1600 rpm) in N₂-saturated 1.0 M KOH solution (ring potential: 0.40 V vs RHE).

as-prepared composites	N	0	Со	Ni	La
PDA/La ₅ Ni ₃ Co ₂	2.34	21.12	0.04	0.12	0.24
PDA/La ₅ Ni ₃ Co _{2-500N}	4.59	14.44	0.33	0.30	0.54
PDA/La ₅ Ni ₃ Co _{2-600N}	2.68	16.62	0.29	0.26	0.74
PDA/La ₅ Ni ₃ Co _{2-700N}	2.05	16.86	0.21	<0.10	1.62

 Table S1 Corresponding contents of different elements.

 Table S2 The contents of different species of O.

as-prepared composites	H ₂ O	-OH/O ₂	O ₂ ²⁻ /O ⁻
PDA/La ₅ Ni ₃ Co ₂	41.1	58.9	_
PDA/La ₅ Ni ₃ Co _{2-500N}	20.7	41.7	36.6
PDA/La ₅ Ni ₃ Co _{2-600N}	33.4	40.0	26.6
PDA/La ₅ Ni ₃ Co _{2-700N}	26.9	47.3	25.8

Table S3 The contents of different species of N.

as-prepared composites	pyridine N	pyrrole N	graphite N	quaternary N
PDA/La ₅ Ni ₃ Co ₂	17.9	34.9	35.4	11.8
PDA/La ₅ Ni ₃ Co _{2-500N}	50.4	21.4	—	28.2
PDA/La ₅ Ni ₃ Co _{2-600N}	47.0	23.7	19.7	11.7
PDA/La ₅ Ni ₃ Co _{2-700N}	24.7	15.9	25.2	34.2

electrocatalyst	electrolyte	Overpotential at 10 mA·cm ⁻² (V)	Tafel slope (mV· dec ⁻¹)	references
NiO-(La _{0.613} Ca _{0.387}) ₂ NiO _{3.562} nanohybrid	0.1 M KOH	0.373	42	1
BCFSn-721	0.1 M KOH	0.450	69	2
LiCo _{0.8} Fe _{0.2} O ₂	0.1 M KOH	0.340	50	3
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	0.1 M KOH	0.350	70	4
IrO _x	1.0 M NaOH	0.32±0.04		5
PDA/La ₅ Ni ₃ Co _{2-500N}	1.0 M KOH	0.360	48.1	This work

Table S4 Comparison of OER activity data for various electrocatalyst.

References

- 1. R. Liu, F. Liang, W. Zhou, Y. Yang and Z. Zhu, *Nano Energy*, 2015, **12**, 115-122.
- 2. X. Xu, C. Su, W. Zhou, Y. Zhu, Y. Chen and Z. Shao, *Adv. Sci.*, 2016, **3**, 1500187.
- 3. Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu and Z. Shao, *Adv. Mater.*, 2015, 27, 7150-7155.
- 4. W. Zhou, M. Zhao, F. Liang, S. C. Smith and Z. Zhu, *Mater. Horiz.*, 2015, **2**, 495-501.
- 5. C.C.L. McCrory, S. Jung, J.C. Peters, and T.F. Jaramillo J. Am. Chem. Soc., 2013, 135, 16977-16987.