Strains and Defects Engineered Monolayer Ni-MoS₂ for pH-universal Hydrogen Evolution Catalysis

Dan Liang^{a,b}, Yong-Wei Zhang^b, Pengfei Lu^{a,*}, Zhi Gen Yu^{b,**}

^aState Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China ^bInstitute of High Performance Computing, A*STAR, Singapore 138632, Singapore

*To whom correspondence should be addressed. E-mail: photon.bupt@gmail.com

**To whom correspondence should be addressed. E-mail: <u>yuzg@ihpc.a-star.edu.sg</u>

Supporting information

This file includes:

Computational methods

Tables S1, S2 & S3

Figures S1, S2 & S3

References

Computational methods

Our theoretical calculations were based on the density functional theory (DFT)¹ as implemented in the Vienna ab-initio Simulation Package (VASP).^{2,3} We used the projector augmented wave method (PAW)^{4,5} to represent electron-ion interactions, and the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA)⁶ was considered for exchange correlation interactions. In addition, the vdW-DF2 method was used to describe the van der Waals interaction.⁷⁻¹⁰ The energy cutoff for the plane-wave basis set was chosen to be 500 eV. The structures were relaxed until the forces on each atom were less than 0.01 eV/Å and the maximum energy change was of the order of 10⁻⁶ eV. To prevent interaction between two neighboring surfaces, a vacuum slab of 15 Å was employed in z-direction. The spin-polarization was considered in this work. The energy barriers for Heyrovsky, Tafel mechanism and water dissociation were determined using climbing image nudged elastic band (NEB) calculations.¹¹ The Gibbs free energy ($\Delta G_{\rm H}$) of the basal planes for both perfect and S vacancy-contained Ni-MoS₂ was calculated using supercells containing 4×4 and 6×6 unit cells, respectively. The k-points for the first Brillouin zone were sampled on a mesh grid of $4 \times 4 \times 1$ and $2 \times 2 \times 1$ for 4×4 and 6×6 supercells, respectively. In order to determine the dynamic stability of Ni-MoS₂, we calculated the phonon spectrum based on the force constant approach using the software package Phonopy.¹² Finite temperature analysis of the system at 1200K was conducted through *ab-initio* molecular dynamics (AIMD). The AIMD simulations were performed using 3000 time steps with a 0.5 fs time step at 1200 K. We employed non-self-consistent G_0W_0 correction¹³ for MoS₂ to calculate the bandgap, and compare the PBE and GW bandgap energies. G_0W_0 correction accounts for the many-body electron interactions but retains the input PBE wave functions, thus results in the more accurate bandgap. A unified k-point mesh $12 \times 12 \times 1$ is adopted for the G₀W₀.

The adsorption energy $(^{\Delta E_H})$ is computed as¹⁴

$$\Delta E_{H} = E(*H) - E(*) - \frac{1}{2}E(H_{2})$$
(1)

where E(*H) and E(*) are the total energy of a supercell with and without hydrogen adsorption, respectively, and $E(H_2)$ is the total energy of a H₂ molecule.

The Gibbs free energy of H ($\Delta G_{\rm H}$) is defined as:

$$\Delta G_H = \Delta E_H + \Delta E_{ZPE} - T \Delta S_H \tag{2}$$

where $\Delta E_{\rm H}$ is the adsorption energy, $\Delta E_{\rm ZPE}$ is the difference in zero-point energy, T is the temperature (300 K) and ΔS_H is the entropy difference between H that is adsorbed and in the gas phase. We approximated the entropy of hydrogen adsorption as $\Delta S_H \approx \frac{1}{2} (S_{H_2}^{\circ})$, where $S_{H_2}^{\circ}$ is the entropy of gas phase H₂ at standard conditions. Therefore, the correction factor of $(\Delta E_{H_2} - T\Delta S_{H_2})$

 $(\Delta E_{ZPE} - T\Delta S_H)$ was computed to be 0.223 eV in this study.

Table S1. Calculated values of lattice parameter (*a*), bond length (d_{M-S} , M=Mo,Ni) for MoS₂, NiS₂, Ni-MoS₂, respectively, and formation energy (E_f) of Ni-MoS₂.

	<i>a</i> (Å)	$d_{\text{M-S}}(\text{\AA})$	$E_{\rm f}({\rm eV})$
MoS ₂	3.192, 3.16015	2.41, 2.42 ¹⁵	
NiS ₂	3.54, 3.4016	2.58, 2.2416	
Ni-MoS ₂	3.351	2.418 (Mo-S)	-1.222
		2.279 (Ni-S)	
		3 857 (*Ni-S)	

Figure S1. Calculated phonon-dispersion curves of Ni-MoS₂ along major symmetry directions of the Brillouin zone.

Table S2. Mechanical properties of Ni-MoS₂, MoS_2 and NiS_2 predicted by first-principles calculations.

	Stiffness Tensor	Youngs's	Shear Modulus	Poisson's Ratio
	(N/m)	Modulus (N/m)	(N/m)	
Ni-MoS ₂	$C_{11} = 93.545$	$Y_x = 89.444$	Y_y = 16.694	v_x = 0.256
	$C_{22} = 62.575$	$Y_y = 59.832$		$v_y = 0.171$
	$C_{12} = 16.019$			
	$C_{66} = 16.694$			
MoS ₂	$C_{11} = 136.261$	Y_x = 128.178	$Y_y = 51.754$	v_x = 0.244
	$C_{22} = 136.260$	Y_y = 128.177		v_y = 0.244

	$C_{12} = 33.188$			
	$C_{66} = 51.754$			
NiS ₂	$C_{11} = 53.541$	$Y_x = 39.805$	Y_y = 17.692	$v_x = 0.515$
	$C_{22} = 51.852$	$Y_y = 38.549$		$v_y = 0.498$
	$C_{12} = 26.688$			
	$C_{66} = 17.692$			

Figure S2. Evolution of the bandgap energy as a function of applied tensile strains (%) within PBE (solid lines) and G_0W_0 correction (dashed lines).

Figure S3. Variation of temperature and the total energy within 1500 fs during AIMD simulation around 1200 K for Ni-MoS₂.

Table S3. Performance of MoS₂, Pt(111) and Ni-MoS₂ catalysts for HER.

Catalwat	ΛC (aV)	Optimal condition	Dandgan (aV)	Water dissociation
Catalyst	$\Delta G_{\rm H}(ev)$	$(\Delta G_{\rm H} \approx 0 \text{ eV})$	Bandgap (ev)	barrier (eV)

MoS ₂	1.736 (present work) $\sim 2^{17}$	strain and S vacancy simultaneously ¹⁷	1.87 (K-K) ¹⁸	3.219
Pt(111)	$\sim 0^{20}$		Metal	1.0721
Ni-MoS ₂	0.545	11% strain or	0.443 (Γ - X)	1.114 (perfect);
		2.5% S vacancy		0.866 (defective);

References

- [1] W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133-1138.
- [2] G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- [3] G. Kresse, J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.
- [4] P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
- [5] G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- [6] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- [7] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Lett., 2004, 92, 246401-246405.
- [8] L. Kong, G. Román-Pérez, J. M. Soler, Phys. Rev. Lett., 2009, 103, 096103-096107.
- [9] K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, D. C. Langreth, Phys. Rev. B, 2010, 82, 081101-081105.
- [10] J. Klimeš, D. R. Bowler, A. Michaelides, Phys. Rev. B, 2011, 83, 195131-195144.
- [11] G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys., 2000, 113, 9901-9904.
- [12] A. Togo, F. Oba, Isao. Tanaka, Phys. Rev. B, 2008, 78, 134106-134115.
- [13] M. Shishkin, G. Kresse, Phys. Rev. B, 2006, 74, 035101-035114.
- [14] J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc., 2005, 152, J23-26.
- [15] K. D. Bronsema, J. L. De Boer, F. Jellinek, Z. Anorg. Allg. Chem., 1986, 540, 15-17.
- [16] C. Ataca, H. Şahin, S. Ciraci, J. Phys. Chem. C, 2012, 116, 8983-8999.
- [17] H. Li, et al., Nat. Mater., 2016, 15, 48-53.
- [18] C. Ataca, H. Şahin, and S. Ciraci, J. Phys. Chem. C, 2012, 116, 8983-8999.
- [19] B. Tang, et al., J. Mater. Chem. A, 2019, 7, 13339-13346.
- [20] J. Greeley, I. E. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem., 2009, 1, 552-556.
- [21] J. L. Fajín, M. D. Cordeiro, J. R. Gomes, J. Phys. Chem. A, 2014, 118, 5832-5840.