In-Plane Co₉S₈@MoS₂ Heterostructure for Hydrogen Evolution Reaction in Alkaline Media

Lechen Diao ^a, Biao Zhang^a, Qiaozhi Sun^a, Ning Wang^a, Qiaozhi Sun^a, Naiqin Zhao^{a,b,c}, Chunsheng Shi^a, Enzuo Liu^{a,b,}, and Chunnian He^{a,b,c,*}

^a School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

^c Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072, China.

* Corresponding Authors.

cnhe08@tju.edu.cn (C. He)).

Figure S1. $C_6H_8O_7$ - $Co(NO_3)_2$ - NH_2CSNH_2 - $(NH_4)_6Mo_7O_{24}$ complex wrap on the surface of the NaCl crystals.

Figure S2. TEM of (a) Co_9S_8 -MoS₂@C, (b) Co_9S_8 @3DC and (c) MoS₂@3DC.

Figure S3. BET surface area of Co_9S_8 -MoS₂@3DC. Insert is the BJH pore size distribution.

Figure S4. Static contact angle of Co_9S_8 -MoS₂@3DC.

Figure S5. HER performance of MoS_2 - Co_9S_8 @3DG with different ratio of MoS_2 to Co_9S_8 (0.5:1.5, 1:1, 1.5:0.5)

Figure S6. Cyclic voltammograms in the region of -0.9 - -0.8 V vs. SCE. (a) Co₉S₈-MoS₂@3DC, (b) Co₉S₈@3DC, (c) MoS₂@3DC, (d) Co₉S₈-MoS₂@3DC, and (e) N S doped C.

Figure S7. SEM image of catalysts on the carbon clothes after i-t test at 50 mA cm⁻².

Figure S8. (a) SEM and (b) HRTEM images of catalysts after i-t test.

Figure S9. (a) XRD and (b-c) XPS images of catalysts after i-t test.

Figure S10. (a) polarization curves, (b)Tafel slope, of Co_9S_8 -MoS₂@3DC, Co_9S_8 @3DC, MoS₂@3DC, and Co_9S_8 -MoS₂@3DC in 0.5 M H₂SO₄. (c) Cathodic linear sweep voltammograms of Co_9S_8 -MoS₂@3DC for the first and 2000th CV cycles in 0.5 M H₂SO₄. (d) Long-term chronoamperometric test performed at overpotential of 230 mV in 0.5 M H₂SO₄.

Figure. S11. (a) polarization curves and (b)Tafel slope of Co_9S_8 -MoS₂@3DC, Co_9S_8 @3DC, MoS₂@3DC, Co_9S_8 -MoS₂@3DC, and N, S doped C in 1 M PBS. (c) Long-term chronoamperometric test performed at overpotential of 470 mV in 1 M PBS.

catalyst	Current	ŋ at	Tafel slope	Reference
	density j=10mA cm ⁻²	corresponding j (mV)	(mV•dec ⁻¹)	
Co-WSe ₂ /MWNTs	10	241		J. Mater. Chem. A, 2018,6,
				4793-4800
MoS ₂ /graphene/Ni	10	> 600	98	Adv. Func. Mater., 2014,
Ivani				24(39). 0123-0129.
C03S4@M0S2	10	310	59	Chem. Mater. 2017, 29, 5566–5573
C09S8@M0S2/CNFs	10	361	61	Adv. Mater. 2015, 27, 4752-4759
MoS ₂ /Ni ₃ S ₂	10	218	88	Angew. Chem. Int. Ed. 2016, 55, 6702-6707.
Carbon Paper/Carbon	10	306	72	ACS Nano 2016, 10, 2342-
Tubes/CobaltSulfide				2340
CoMoSx	10	190	124	ACS Appl. Mater. Interfaces2019112421634- 21644

Table S1.	Performance c	omparison	of the	HER	activity	in	alkaline	electrol	lvte
									J · · ·

C09S8+Ni3S2/Ni	10	278	-	Electrochimica Acta, 2019,
				299: 152-162.
Co ₃ S ₄ /MoS ₂ /Ni ₂ P	10	178	98	J. Mater. Chem. A 2017, 5, 25410-25419
CoSe ₂ -MoSe ₂ /rGO-	10	215	83.2	J. Mater. Chem. A 2018, 6,
С				12701-12707.
C09S8@M0S2/CNFs	10	190	110	Adv. Mater. 2015, 27, 4752–4759