Supporting information

Fully inkjet-printed transparent humidity sensor based on Ti_3C_2/Ag hybrid for touchless sensing of finger motion

Ning Li[‡], Yue Jiang[‡], Yan Xiao, Bo Meng, Chenyang Xing, Han Zhang^{*} and Zhengchun Peng^{*}

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

[‡] These authors contributed equally to this work.

*To whom correspondence should be addressed. E-mail: hzhang@szu.edu.cn; zcpeng@szu.edu.cn

Fig. S1 A schematic diagram of the experimental setup. (a) The humidity sensing performance test system (Corresponding to the actual layout shown in Movie S1). (b) The transient response test system.

Movie S1 The actual layout of humidity sensing performance test system.

Fig. S2 SEM images of Ti_3AIC_2 (a), HF-etched Ti_3C_2 (b) and as-prepared 2D Ti_3C_2 MXene nanosheets (c).

Fig. S3 (a) The physical drawing of PDDA, Ti_3C_2/Ag and Ti_3C_2/Ag -PDDA mixture. SEM images of pure PDDA films (b) and Ti_3C_2/Ag -PDDA bilayer (c) with no bending.

Fig. S4 (a) TEM image of Ti_3C_2/Ag hybrid. (b-f) EDS mapping of Ag, Ti, O, C and F.

Table S1Atomic concentration and Mass concentration of elements on the surfaces of Ti3C2/Aghybrid (Sample TA2) corresponding to Fig. S4.

Elements	Ag	Ti	С	0	F
Atomic Fraction (%)	0.32	14.91	29.92	53.82	1.03
Mass Fraction (%)	1.96	35.80	18.07	43.20	0.97

Fig. S5 X-ray photoelectron spectra (Ti 2p) of pure Ti_3C_2 (a) and Ti_3C_2/Ag hybrid (b), respectively.

Sensing materials	Sensing	Respons	Recover	Detectio	Sensitivity	Reference
	principe	е	y time	n range	(%)	S
		time (s)	(s)	(% RH)		
GO	R	0.03	0.03	35-80	1000	34
MoS ₂ /SnO ₂	С	5	13	0-97	3285000	36
MWCNT	R	2.5	3	30-90	10	38
Graphene/methyl-	С	0.25	0.35	5-95	2869500	39
red						
PEDOT:PSS/ZnSnO ₃	R	0.2	0.2	0-90	2900	40
GDO	R	0.007	0.034	23-95	7500	41
Inkjet-printed	R	7	55	10-80	17	42
Nofier		0.02	0.05	20.00	100	42
	ĸ	0.03	0.05	30-80	100	43
Silicon-nanocrystal	ĸ	0.04	0.04	8-83	100000	44
	ĸ	0.012	0.012	30-80	2.5	45
GNCP	R	0.02	0.017	0-97	28380	46
Li ₄ Ti ₅ O ₁₂ -TiO ₂	R	9	17	11-95	1000	47
Li-doped GO	R	4	25	11-97	750	48
Li ⁺ -doped SnO ₂	R	1	1	10-90	500	49
MoS ₂ /ZnO QDs	Z	1	20	11-95	22000	50
N-Doped RGO Fiber	R	2	5	6-99	3.53	51
Pyranine/rGO	R	2	2	11-95	6000	52
PDI-4T	R	0.024	1	1-95	10000	53
SIM	R	0.037	0.09	11-86	23000	54
GO QDs	Z	1.5	1.5	7-97	181600	20
Ag-NA-rGO	Z	1	1	11-95	35000	55
Dopamine-melanin	R	0.42	0.43	0-100	10000	56
SnO ₂ /Fe	Z	1	3	10-95	647900	57
VO ₂	R	0.5	0.5	30-95	10	58
CS-DMV	R	0.008	0.024	10-95	400	59
Ti ₃ C ₂ /Ag	С	0.08	0.12	10-95	106800	This work

Table S2High performance humidity sensors reported in the literature.

Fig. S6 Comparison of humidity sensitivity of sensors based on Ti_3AlC_2 , HF-etched bulk Ti_3C_2 , pure Ti_3C_2 , PDDA and PDDA/ ethylene glycol layers.

Fig. S7 Comparison of humidity sensitivity of sensors based on PEDOT: PSS, PDDA, PDDA/ ethylene glycol and pure Ti_3C_2 on the Au interdigital electrodes (silicon substrate).

Fig. S8 Comparison of humidity sensitivity of sensors based on Ti_3C_2 with different length-width ratio of electrodes and different sizes of sensing layers.

Fig. S9 (a) Capacitance versus RH for sensor TA2 under different operation frequency. (b) Capacitance versus the operation frequency for sensor TA2 at different humidity levels.

Fig. S10 Response of sensor TA2 as a function of RH.

Fig. S11 Repeatability performance of sensor TA2 exposed to 45% RH, 65% RH, and 85% RH from dry $N_{\rm 2}.$

Fig. S12 Hysteresis curve of adsorption-desorption responses measured in the 5% - 95%RH range.

Fig. S13 Stable capacitance output of sensor TA2 under different humidity conditions for 40 days.

Fig. S14 Height-resolved capacitance diagram on the near surface of a fingertip measured by the as-established humidity sensor.

Fig. S15 Fitting result of the impedance spectra data by using the software Zview 3.3.

Fig. S16 Complex impedance plots of pure Ti_3C_2 film.

Fig. S17 Bode diagram of Ti_3C_2/Ag hybrid (a) and Ti_3C_2 (b).

Movie S2 The reconstructed dynamic information of the "knob turning motion" and "multiple fingers" state of human hands captured by the 3D noncontact positioning interface model.