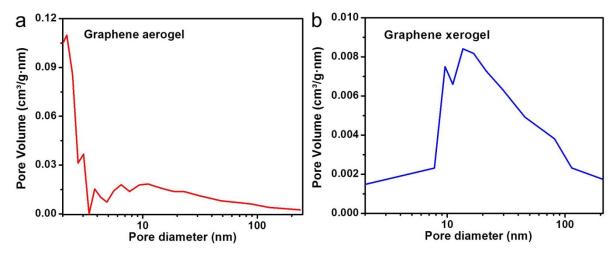
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019


Supplementary Information

What is the effective pristine graphene electrode for energy storage devices: aerogel or xerogel?

Sung Mi Jung¹, Dong Won Kim² and Hyun Young Jung²,*

¹Environmental Fate & Exposure Research Group, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, South Korea, ²Department of Energy Engineering, Gyeongnam National University of Science and Technology, Jinju-si, Gyeongnam 52725, South Korea.

* To whom correspondence should be addressed. E-mail: hyjung@gntech.ac.kr

Figure S1. Pore size distribution of the graphene aerogels (a)^[1] and xerogels (b). Most of the pore size of the aerogels is less than 10nm, while that of the xerogels is between 10 nm to 100 nm.

Reference

[1] S. M. Jung, D. L. Mafra, C.-T. Lin, H. Y. Jung, J. Kong, Nanoscale. 2015, 7, 4386.