Supplemental Information (SI)

Low-Frequency Electronic Noise in Superlattice and Random-Packed Thin Films of Colloidal Quantum Dots

Adane Geremew¹, Caroline Yu Qian², Alex Abelson², Sergey Rumyantsev³, Fariborz Kargar¹, Mathew Law² and Alexander A. Balandin^{1*}

¹Nano-Device Laboratory (NDL) and Phonon Optimized Engineered Materials (POEM) Center, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 USA

²Department of Chemistry, University of California, Irvine, California 92697 USA

³Center for Terahertz Research and Applications (CENTERA), Institute of High-Pressure Physics, Polish Academy of Sciences, Warsaw 01-142 Poland

^{*} Corresponding author (A.A.B.): <u>balandin@ece.ucr.edu</u>; Web-site: <u>https://balandingroup.ucr.edu/</u>

Figure S1: Fourier transform infrared spectra of the QD films in this study. Spectra of typical DC SCN, DC EDA, SC EDA, and SL films on silicon substrates. All samples were measured prior to ALD infilling. The labeled peaks were assigned as follows: peaks 1-2 are adsorbed ethylenediamine (1: $v(NH_2)$, 2: NH₂ scissor), peaks 3-4 are adsorbed oleate and ethylenediamine (3: $v_{as}(CH_2)$, 4: $v_s(CH_2)$), peaks 5-6 are unique to oleate (5: v(HC=CH), 6: $v_s(COO^-)$), peaks 7-9 are adsorbed ethylene glycoxide (7: $v_{as}(CH_2)$, 8: $v_s(CH_2)$, 9: v(C-O) and v(C-C)), and peak 10 comes from adsorbed thiocyanate (10: v(C=N)). The ligand content of each film is summarized in Table S1.

Table S1: Lig	and content	of the	films
---------------	-------------	--------	-------

film type	oleate	glycoxide	ethylenediamine	thiocyanate
DC SCN	no	no	no	yes
DC EDA	residual*	no	yes	no
SC EDA	yes	yes	no	no
SL	yes	yes	no	no

* The presence of the ligand cannot be ruled out, but if present it is at a low concentration.

Figure S2: (a) Resistivity as a function of temperature. (b) Resistivity as a function of the inverse temperature. The data are shown for the random (DC SCN#1) and ordered (LS#1) quantum dot samples.

Figure S3: Logarithmic plot of the electrical conductivity as a function of inverse temperature for the random (DC SCN#1) and ordered (LS#1) quantum dot samples.

Figure S4: Normalized noise spectral density as a function of frequency measured at different temperatures for the ordered QD sample.

Figure S5: Normalized noise spectral density as a function of frequency measured at different temperatures for the random QD sample.