Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Multifunctional inorganic nanomaterials for energy applications

Huilin Wang,^{a,b} Xitong Liang,^{a,b} Jiutian Wang,^{a,b} Shengjian Jiao^{a,b} and Dongfeng Xue*^{a,b}

*Corresponding author: E-mail: dongfeng@ciac.ac.cn

 $\label{eq:Fig.S1} \mbox{Fig.S1} \mbox{ MnCo}_2O_4 @Ni(OH)_2 \mbox{ core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance and $V_2O_5 - SnO_2$ double-shelled nanospheres. 1,2 }$

Fig. S2 (a) Schematic illustration of ORR and HER processes of FeCo@C MS. (b) Illustration of the rechargeable Zn–air battery. (c) Electrochemical performance of rechargeable Zn–air batteries using FeCo@C MS as catalysts in 6 M KOH. Galvanostatic discharge curves of primary Zn–air batteries. The specific capacity is normalized by the mass of the consumed Zn anode. (d) Pulse cycling performance of the rechargeable Zn–air batteries using FeCo@C MS at 10 mA cm⁻² with 5 min discharge and 5 min charge. ³

	Material	Morphology	Application	Performance	Preparation	Reference
Energy	SnSe	Nanosheet	Thermoelectric	Low thermal conductivity	Thermal evaporation	4
generatio				High ZT of 0.055 at 501 K		
n	Cd-doped SnSe	Nano-crystal	Thermoelectric	Low thermal conductivity	Solvothermal	5
				High power factor		
				High hole carrier concentration		
				High ZT approximate to 1.7 at 823 K		
	Sn _{0.99} Na _{0.01} Se-	Nanoprecipitat	Thermoelectric	Ultralow lattice thermal conductivity of below 0.3 W m ⁻¹ K ⁻¹	High temperature	6
	STSe	e		High peak ZT of 1.33 at 773 K	melting	
	PbTe-4% InSb	Nanocomposit	Thermoelectric	High ZT of 1.83 at 773 K	High pressure heat	7
		e			treatment	
	Cu ₅ FeS ₄	Core-shell	Thermoelectric	High power factor	Colloidal synthesis	8
				Low thermal conductivity		
				Enhanced ZT value of ≈ 0.62 at 710 K		
	Cu ₂ Se/CNT	Nanocomposit	Thermoelectric	Low lattice thermal conductivity	High energy ball-	9
		e		Record-high ZT of 2.4 at 1000 K	milling	
	C_{60}/TiS_2	Nanocomposit	Thermoelectric	Flexible	Printing	10
		e		High Seebeck coefficient		
				High power factor		

Table S1 Summaries of performance and preparation of multifunctional inorganic materials in various energy applications

				High ZT approximate to 0.3 at 400 K		
	Kevlar	Nanowire	Piezoelectric	High flexibility	Solvothermal	11
	microfiber-ZnO			Robustness and durability		
				Open-circuit voltage and short-circuit current are 1.8 mV and 4.8 pA, respectively.		
	S-treated MoS ₂	Nanosheet	Piezoelectric	Output peak current and voltage are increased by more than 3 times	Chemical vapor	12
				(100 pA) and 2 times (22 mV), respectively.	deposition	
	PVDF-AgNW	Nanofiber	Triboelectric	Excellent mechanical stability	Electrospinning	13
				High output performances		
	P(VDF-TrFE)	Nanocomposit	Triboelectric	Boosting power-generating performance is achieved for 1130 V of	Spin-coating heat	14
		e		output voltage and 1.5 mA of output current	treatment	
	Al/PTFE	Micro-	Triboelectric	Excellent high-temperature tolerance (temperature ring of -30 to 550	Ball-milling	15
		nanocomposit		°C)		
		e		Wear-resisting ability		
				High hardness (rockwell hardness: 63 HRM)		
				High output voltage and current of 221 V and 27.9 μ A cm ⁻²		
Energy			Solar cell	PCE: 14.35%	Coprecipitation	16
conversio				Good match between the energy level of the SnO ₂ shell		
n	ZnO-SnO ₂	Core-shell		High electron mobility of the core ZnO nanoparticles		
			Solar cell	PCE : 7.00%	E-beam evaporation	17
				Anti-reflective coating decrease the reflectance by producing a	and chemical bath	
	TiO ₂ -SiO ₂	Core-shell		refractive index gradient	deposition	

		Solar cell	Relative conversion efficiency : 37.3%	Rf magnetron	18
			The piezo-phototronic effect was effectively applied to improve	sputtering	
	Core-shell		The relative conversion efficiency		
n-ZnO/p-SnS	nanowire array				
		Solar cell	PCE: 2.5%	Hot injection	19
	Core-shell		Improved passivation of the PbS		
PbS-CdS	quantum dot		Surface by the CdS shell, leading to a lower electron trap density		
		Solar cell	PCE : 11.24%	Electrospraying and	20
			WO ₃ nanosheet arrays yield significantly enhanced photovoltaic	hydrothermal	
			performance as compared to nanoparticles and nanorod arrays		
			Due to good perovskite absorber infiltration in the porous scaffold and		
WO ₃ -TiO ₂	Core-shell		more rapid carrier transport.		
		Solar cell	PCE: 6.5%	Precipitation	21
			PbS shell formation on the PbSe core mitigates the trade-off		
	Core-shell		relationship between the open circuit voltage and the short circuit		
PbSe-PbS	quantum dot		current density.		
		Fuel cell	A negligible voltage loss after 30000 cycles	Ultrasonic mixing	22
Pt–C	Core-shell		The robustness of the carbon shells that secure the Pt nanoparticles.	and heat treatment	
		Fuel cell	Specific activity is 2.2 times that of commercial Pt/C	Replacement reaction	23
IrNi@PdIr/C	Core-shell		PdIr shell inhibits oxide formation.		
		Fuel cell	ORR and MOR mass activities were 8.3 and 3.3 times higher than	One-pot epitaxial	24
Pd/PtCu	Core-shell		those of commercial Pt, respectively	growth	

				Lower the catalyst cost but also improve the catalytic activity and		
				stability		
			Fuel cell	Electrochemical active surface area/mass of core-shell catalyst is 7	Precipitate and	25
	Pt-Rh _x S _y	Core-shell		times that of commercial Rh_xS_y catalyst.	thermal treatment	
			Fuel cell	The functionalized redox nanomaterial exhibits reversible	-	26
				electrocatalytic activity for the $H_2/2H^+$ interconversion from pH 0 to		
	CNT/Ni			9, with catalytic preference for H_2 oxidation at all pH values.		
			Catalysis	HER: 97 mV (10 mA cm ⁻²)	S vapor-assisted	27
				Tafel slope: 71 mV dec ⁻¹		
				Precisely tune		
	Co ₉ S ₈ /MoS ₂	Core-shell		Tensile surface strain		
			Catalysis	Her: 80 mV (10 mA cm ⁻²)	Wet chemical process	28
				The significant enhancing effect from nanometer thick amorphous PS	and phosphidation	
	CoP@PS	Core-shell		layer on the turnover process		
			Catalysis	50,000 voltage cycles with negligible activity decay	Nonaqueous	29
	PtPb/Pt	Core-shell			conditions	
Energy			Supercapacitors	Capacitance of 701 F g ⁻¹	Hydrothermal and	
storage	crystallineFe ₂ O ₃ /			The tunable amorphous	heat treatment	
	amorphous	Core-shell		Layer facilitates the Li ⁺ diffusion while introduced oxygen defects in		
	Fe2O3	nanorod		Fe ₂ O ₃ can be effectively tuned to improve electronic conductivity		30
	P-doped		Supercapacitors	Areal capacitance of 5.75 F cm ⁻²	Hydrothermal	
	Ni(OH) ₂ -MnO ₂			Without capacitance loss at after 10 000 cycles		31

			Large surface area, good mechanical stability		
			High ion diffusivity and numerous electroactive sites		
Zinc-nickel-	Core-shell	Supercapacitors	Specific capacitance of 2847.5 F cm ⁻³ (10.678 F cm ⁻²)	Hydrothermal and	
cobalt oxide	nanowire		The increased electrical conductivity of the core electrode	calcination	
@Ni(OH) ₂	arrays				32
		Supercapacitors	Specific capacitance of 1450 F g ⁻¹	Hydrothermal	
			Cycling stability (~4.2% loss after 6000 cycles)		
			Rational design of nico ₂ o ₄ nanoflakes adhering on Co ₃ O ₄ nanowires,		
			which promotes two electroactive materials utilizing the synergistic		
Co ₃ O ₄ @NiCo ₂ O			effect to supply more pathways for accelerating fast electron and ion		
4	Core-shell		transfer		33
		Supercapacitors	Capacitance of 2200 F g ⁻¹	Template assisted	
			98.9 % after 5000 cycles	electrodeposition	
Ni-Co@Ni-Co			A novel hierarchical nanotube array with a massive layered top and		
LDH	Core-shell		discretely separated nanotubes in a core-shell structure		34
		Supercapacitors	Capacitance of 2154 F g ⁻¹	Hydrothermal	
			Hierarchical structure can not only efficiently ensure the synergetic		
			effect of the two pseudocapacitive materials but also promote the		
MnCo ₂ O ₄ @Ni(Core-shell		diffusion and migration of electrolyte ions during the rapid		
OH) ₂	flowers		charge/discharge process		1
		Supercapacitors	Capacitance of 1811 F g ⁻¹	In situ coprecipitation	
ErOOH	Colloid		Short ion diffusion and electron transfer length to enable the fast and		35

			reversible faradaic reactions		
		Lithium-ion	Anode: 947 mA h g ⁻¹	Coprecipitation	
		batteries	Cathode: 174 mA h g ⁻¹		
			The current nanoarchitecture provides short li ion pathways and high		
			electronic and ionic conductivity, and the hollow architecture is able		
V ₂ O ₅ -SnO ₂	Core-shell		to accommodate large volume variations		2
Mn _{1-x} Fe _x P	Solid solution	Lithium-ion	A capacity of 360 mA h g ⁻¹ after 100 cycles at a high current density	High energy	36
	phosphide	batteries	of 2 A g ⁻¹	mechanical milling	
Cu ₃ Si-Si@C@G	Core-shell	Lithium-ion	Good rate performance and delivers reversible capacity of 483 mA h	Sol-gel coating	37
		batteries	g ⁻¹ after 500 cycles with capacity retention of about 80% at high current		
			density of 4 A g ⁻¹		
H-MoP@rGO	Core-shell	Sodium-ion	The specific capacity is as high as 353.8 mA h g ⁻¹ at 1 A g ⁻¹ after 600	Hydrothermal	38
		batteries	cycles	followed by	
			Extraordinary rate performance of 183.4 mA h g ⁻¹ at an ultrahigh	phosphorization	
			current density of 10 A g ⁻¹ even after 3000 cycles.	procedure	
FeS ₂	Foam-like	Sodium-ion	High electrical conductivity	Solution combustion	39
	nanostructure	batteries	Good ion diffusion kinetics	followed by heat	
			High inhibition capacity of volume expansion.	treatment	
			High capacity of 823 mA h g ⁻¹ at 0.1 A g ⁻¹ , very close to the theoretical		
			capacity of FeS_2		
			Good rate capability of 581 mA h g ⁻¹ at 5.0 A g ⁻¹		
l			Good cycle ability of 754 mA h g ⁻¹ at 0.2 A g ⁻¹ with 97% retention after		

			80 cycles		
VS ₄	3D self-	Sodium-ion	High reversible capacity of 412 mA h g ⁻¹ at 0.2 A g ⁻¹ after 230 cycles	Hydrothermal	40
	assembled	batteries	Capacity of 345 and 293 mA h g ⁻¹ even at 1.0 and 2.0 A g ⁻¹ ,		
	nanoarchitectu		respectively		
	res				
Ti ₂ Nb ₂ O ₉	Nanosheet	Sodium-ion	High reversible capacity of 250 mA h g ⁻¹ at 50 mA g ⁻¹ at a suitable	Liquid exfoliation	41
		batteries	average voltage of approximate to 0.7 V.	combined with	
				thermal dehydration	
Ni/PCNFO	Nanofiber	Lithium-sulfur	High electrical conductivity	Electrospinning	42
		batteries	High specific capacity of 1320 mA h g ⁻¹		
			Excellent rate capability of 780 mA h g ⁻¹		
			Long cycling stability of 910 mA h g ⁻¹ after 500 cycles at 0.2 C		
3DNG/TiN	Composite	Lithium-sulfur	Ultrahigh areal capacity of 12.0 mA h cm ⁻² at a high current density of	Hydrothermal	43
		batteries	8.03 mA cm ⁻²		
rGO/GC/S	Composite	Lithium-sulfur	High capacity of 524 mA h g ⁻¹ after 100 cycles at a current rate of 0.2	Low-temperature wet	44
		batteries	С	spinning	
Fe ₃ C@N–C	Core-shell	Lithium-sulfur	High capacity of 1351 mA h g ⁻¹ at 0.1 C	Thermal treatment	45
		batteries	Outstanding rate capability and cycling stability		
Ni-doped CoO	Nanosheet	zinc-air batteries	Excellent performance with a record-high discharge peak power	Hydrothermal	46
			density of 377 mW cm ⁻² , and works stable for >400 h at 5 mA cm ⁻²		
FeCo@C MS	Core-shell	zinc-air batteries	High discharge voltage of 1.27 V	Solvothermal	3
			High specific capacity of 503 mA h g ⁻¹	followed by two-step	

				Energy density of 639 W h kg ⁻¹	carbonization	
Energy	WO ₃	Tunneled	Smart window	6.1 s for the colouration speed and 2.5 s for the bleaching speed	Precipitation, anneal,	47
saving		phosphorus-		Colouration efficiency 55.9 cm ^{2} C ^{-1}	red P ignition	
		doped film		Higher retention (91.5%) of transmittance modulation after 1000		
				electrochromic (EC) cycles		
	WO ₃	Mesoporous	Smart window	$T_{c} = 1.4 \text{ s}$	Dip-coating sol-gel	48
		film		$T_b = 1.1 s$		
				93.1% of the original value after 1000 cycles and 74.6% after 2500		
				cycles		
				CE value of 79.7 cm ² C ^{-1}		
	Cs _x WO ₃	Nanorod	Smart window	Visible light transmittance reaching 78.22%	Solvothermal, heat-	49
				NIR shielding rate being 97.36%	treat, citric acid	
				Transparent insulation index attaining 175.58	thermolysis	
	Pt-doped	Nanorod	Smart window	Visible light transmittance reaching 39.58%	Solvothermal	50
	K _x WO ₃			NIR shielding rate being 94.75%		
	M _x WO ₃ /ZnO	Nanorod	Smart window	Visible light transmittance reaching 92 %	Hydrothermal	51
				High NIR shielding rate		
				50% of toxic no gas could be decomposed by composite and relevant		
				film under the irradiation of UV light		
	BN	Nanosheet	Cooling liquids	2.39 W mK^{-1} at 24 vol% loading	Molten alkali-	52
					assisted liquid	
	Graphene	Nanoplatelet	Coolants	The maximum thermal conductivity enhancement of 22.92% is	Sonication	53

				attained for the sample containing 0.1 wt% at a fluid temperature of		
				45 °C		
				The dynamic viscosity and density are close to those for DI water		
				High stability		
GO-TiO ₂	Nanosheet		Nanolubricant	The film thickness of lubricant with GO-TiO ₂ was 28.07 nm	Solvothermal	54
Al/InAs	Nanowire		Superconductivity	Biasing the junction to $\phi \approx \pi$ reduces the critical field at which the zero-	Electron beam	55
				bias peak appears, with respect to $\phi = 0$	lithography	
Nb/InAs,	Nanowire		Superconductivity	Al/InAs-nanowire/Al junctions comprising an Al electrode separation of 220	Mbe(molecular beam	56
Al/InAs				nm	epitaxy)	
				With no clear Josephson supercurrent was achieved, the measured voltage		
				signal becomes nonlinear around zero bias current		
InAs/V	Nanowire		Superconductivity	The nanoscale superconducting vanadium had a high out-of-plane	Mbe(molecular beam	57
				critical field	epitaxy)	
				BC = 1.8 T, far exceeding the bulk value		
				Devices fabricated from hybrid InAs/vanadium nanowires showed		
				superconducting transitions at T < 4 K		
YBa ₂ Cu _{3-x} Ni _x O ₇	Nanowire		Superconductivity	The T _c values range between 70 and 93.2 K for samples with $x = 0.04$	Electrospinning	58
-δ				to $x = 0.00$, respectively, where the substitution of Cu with Ni results		
				in a lower T _c		
ABC-TLG/hBN	Hall	bar	Superconductivity	1/4-filling Mott insulator with $D = -0.54 \text{ V nm}^{-1}$ and $n = -5.4 \times 1011$	Dry transfer	59
	geometry			cm ⁻² .		
				Estimated superconducting T _c of 0.65 K		
	GO-TiO ₂ Al/InAs Nb/InAs, Al/InAs InAs/V YBa ₂ Cu _{3-x} Ni _x O ₇ -δ ABC-TLG/hBN	GO-TiO2NanosheetAl/InAsNanowireNb/InAs, Al/InAsNanowireInAs/VNanowireYBa2Cu3-xNixO7 -δNanowireABC-TLG/hBNHall geometry	GO-TiO2NanosheetAl/InAsNanowireNb/InAs, Al/InAsNanowireInAs/VNanowireYBa2Cu3-xNixO7 -δNanowireABC-TLG/hBNHall geometry	GO-TiO2NanosheetNanolubricantAl/InAsNanowireSuperconductivityNb/InAs, Al/InAsNanowireSuperconductivityInAs/VNanowireSuperconductivityYBa2Cu3-xNixO7 -δNanowireSuperconductivityABC-TLG/hBNHall geometrybarSuperconductivity	Image: Problem in the second secon	Aliande for the sample containing 0.1 wt% at a fluid temperature of 45 °C The dynamic viscosity and density are close to those for D1 water High stability Selection 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

			At D = -0.17 V nm ⁻¹ , where only the 1/2-filling Mott state exists, the		
			phase diagram shows no superconductivity even at base temperature		
Graphene/α-	Nonlayered	Superconductivity	The extracted value of the interface transparency is T $\approx 0.7-0.8$,	Chemical vapor	60
Mo ₂ C			indicating a highly transparent high-quality graphene-2D α -Mo ₂ C	deposition	
			interface in comparison with previous work on graphene		
			hybrid/heterostructure devices with either deposited or stacked		
			superconducting contacts		
NbSe ₂	Nanoplate	Superconductivity	Superconductivity transition is observed within the temperature range	Chemical vapor	61
			of 4.60–5.40 K	deposition	
			The T _c at zero magnetic field is 5.05 K, slightly lower than that of bulk		
			NbSe ₂ (~7.2 K)		
			A magnetic field of 3.0 T completely suppresses the superconductivity		
			down to the lowest measured temperature. $T_{BKT} \approx 4.83 \ K$		
NbC	3D nanowire	Superconductivity	FIBID planar nanowires become superconducting at $T_{\rm c}\approx 5~K$	Focused ion beam	62
			The critical temperature of free-standing 3D nanowires is as high as T_c	direct writing	
			\approx 11 K, which is close to the value of bulk NbC.		
WC	3D hollow	Superconductivity	The nanowires become superconducting at 6.4 K and show large	Focused electron	63
	nanowire		critical magnetic field and critical current density resulting from their	beam induced	
			quasi-one-dimensional superconducting character.	deposition	
ZnO	Flower-shaped	Insulating	The conductivity decreased with increasing amount $(0.1 \text{ to } 3 \text{ wt\%})$ of	Heat treatment	64
	particle		coated ZnO nanoparticles		
			The addition of 3 wt% C8-coated ZnO nanoparticles reduced the		

			conductivity of the LDPE by 2–3 orders of magnitude		
MgO	Hexagonal	Insulating	The lowest volume conductivity was ca. 7 \times 10 ¹⁶ S m ⁻¹ for 3 wt%	Liquid precipitation	65
	platelet		surface coated nanoparticles	and heat treatment	
			Uniformly dispersed MgO nanoparticles up to contents as high as 9		
			wt%, with maintained 10–100 times reduced volume conductivity		

- 1. Y. Zhao, L. F. Hu, S. Y. Zhao and L. M. Wu, Adv. Funct. Mater., 2016, 26, 4085-4093.
- 2. J. Liu, H. Xia, D. F. Xue and L. Lu, J. Am. Chem. Soc., 2009, 131, 12086-12087.
- 3. Y. T. Xu, B. L. Chen, J. Nie and G. P. Ma, *Nanoscale*, 2018, **10**, 17021-17029.
- 4. M. R. Burton, T. J. Liu, J. McGettrick, S. Mehraban, J. Baker, A. Pockett, T. Watson, O. Fenwick and M. J. Carnie, Adv. Mater., 2018, 30, 1801357.
- 5. X. L. Shi, A. Wu, T. L. Feng, K. Zheng, W. D. Liu, Q. Sun, M. Hong, S. T. Pantelides, Z. G. Chen and J. Zou, *Adv. Energy Mater.*, 2019, 9, 1803242.
- 6. Y. B. Luo, S. T. Cai, X. Hua, H. J. Chen, Q. H. Liang, C. F. Du, Y. Zheng, J. H. Shen, J. W. Xu, C. Wolverton, V. P. Dravid, Q. Y. Yan and M. G. Kanatzidis, *Adv. Energy Mater.*, 2019, **9**, 1803072.
- 7. J. Zhang, D. Wu, D. S. He, D. Feng, M. J. Yin, X. Y. Qin and J. Q. He, *Adv. Mater.*, 2017, **29**, 1703148.
- 8. A. J. Zhang, B. Zhang, W. Lu, D. D. Xie, H. X. Ou, X. D. Han, J. Y. Dai, X. Lu, G. Han, G. Y. Wang and X. Y. Zhou, Adv. Funct. Mater., 2018, 28, 1705117.
- 9. R. Nunna, P. F. Qiu, M. J. Yin, H. Y. Chen, R. Hanus, Q. F. Song, T. S. Zhang, M. Y. Chou, M. T. Agne, J. Q. He, G. J. Snyder, X. Shi and L. D. Chen, *Energy Environ. Sci.*, 2017, **10**, 1928-1935.
- 10. L. M. Wang, Z. M. Zhang, L. X. Geng, T. Y. Yuan, Y. C. Liu, J. C. Guo, L. Fang, J. J. Qiu and S. R. Wang, *Energy Environ. Sci.*, 2018, 11, 1307-1317.
- 11. L. Zhang, S. Bai, C. Su, Y. B. Zheng, Y. Qin, C. Xu and Z. L. Wang, Adv. Funct. Mater., 2015, 25, 5794-5798.
- 12. S. A. Han, T. H. Kim, S. K. Kim, K. H. Lee, H. J. Park, J. H. Lee and S. W. Kim, Adv. Mater., 2018, 30, 1800342.
- 13. S. Cheon, H. Kang, H. Kim, Y. Son, J. Y. Lee, H. J. Shin, S. W. Kim and J. H. Cho, Adv. Funct. Mater., 2018, 28, 1703778.
- 14. W. Seung, H. J. Yoon, T. Y. Kim, H. Ryu, J. Kim, J. H. Lee, J. H. Lee, S. Kim, Y. K. Park, Y. J. Park and S. W. Kim, Adv. Energy Mater., 2017, 7, 1600988.
- 15. J. Wen, B. D. Chen, W. Tang, T. Jiang, L. P. Zhu, L. Xu, J. Chen, J. J. Shao, K. Han, W. Ma and Z. L. Wang, Adv. Energy Mater., 2018, 8, 1801898.
- 16. Z. Li, R. Wang, J. Xue, X. Xing, C. Yu, T. Huang, J. Chu, K.-L. Wang, C. Dong, Z. Wei, Y. Zhao, Z.-K. Wang and Y. Yang, J. Am. Chem. Soc., 2019, 141, 17610-17616.

- 17. C. W. Chen, H. W. Tsai, Y. C. Wang, T. Y. Su, C. H. Yang, W. S. Lin, Z. H. Lin, J. S. Huang and Y. L. Chueh, J. Mater. Chem. A, 2019, 7, 11452-11459.
- 18. L. P. Zhu, L. F. Wang, F. Xue, L. B. Chen, J. Q. Fu, X. L. Feng, T. F. Li and Z. L. Wang, Adv. Sci., 2017, 4, 1600185.
- 19. M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko and M. A. Loi, J. Mater. Chem. A, 2015, 3, 1450-1457.
- 20. K. Mahmood, B. S. Swain, A. R. Kirmani and A. Amassian, J. Mater. Chem. A, 2015, 3, 9051-9057.
- 21. H. Choi, J. H. Song, J. Jang, X. D. Mai, S. Kim and S. Jeong, *Nanoscale*, 2015, 7, 17473-17481.
- 22. M. Karuppannan, Y. Kim, S. Gok, E. Lee, J. Y. Hwang, J. H. Jang, Y. H. Cho, T. Lim, Y. E. Sung and O. J. Kwon, Energy Environ. Sci., 2019, 12, 2820-2829.
- 23. B. W. Qin, H. M. Yu, J. Jia, C. Jun, X. Q. Gao, D. W. Yao, X. Y. Sun, W. Song, B. L. Yi and Z. G. Shao, *Nanoscale*, 2018, 10, 4872-4881.
- 24. F. Lin, K. Wang, Y. H. Tang, J. P. Lai, M. C. Lou, M. H. Huang and S. J. Guo, *Chem. Commun.*, 2018, 54, 1315-1318.
- 25. Y. C. Li and T. V. Nguyen, J. Power Sources, 2018, 382, 152-159.
- 26. S. Gentil, N. Lalaoui, A. Dutta, Y. Nedellec, S. Cosnier, W. J. Shaw, V. Artero and A. Le Goff, Angew. Chem. Int. Edn., 2017, 56, 1845-1849.
- H. Zhu, G. H. Gao, M. L. Du, J. H. Zhou, K. Wang, W. B. Wu, X. Chen, Y. Li, P. M. Ma, W. F. Dong, F. Duan, M. Q. Chen, G. M. Wu, J. D. Wu, H. T. Yang and S. J. Guo, *Adv. Mater.*, 2018, 30, 1707301.
- 28. D. J. Li, J. Kang, H. J. Lee, D. S. Choi, S. H. Koo, B. Han and S. O. Kim, Adv. Energy Mater., 2018, 8, 1702806.
- 29. L. Z. Bu, N. Zhang, S. J. Guo, X. Zhang, J. Li, J. L. Yao, T. Wu, G. Lu, J. Y. Ma, D. Su and X. Q. Huang, Science, 2016, 354, 1410-1414.
- 30. S. Sun, T. Zhai, C. Liang, S. V. Savilov and H. Xia, *Nano Energy*, 2018, 45, 390-397.
- 31. K. Z. Li, S. K. Li, F. Z. Huang, X. Y. Yu, Y. Lu, L. Wang, H. Chen and H. Zhang, *Nanoscale*, 2018, 10, 2524-2532.
- Q. C. Zhang, W. W. Xu, J. Sun, Z. H. Pan, J. X. Zhao, X. N. Wang, J. Zhang, P. Man, J. B. Guo, Z. Y. Zhou, B. He, Z. X. Zhang, Q. W. Li, Y. G. Zhang, L. Xu and Y. G. Yao, *Nano Lett.*, 2017, 17, 7552-7560.
- 33. X. Wu, Z. C. Han, X. Zheng, S. Y. Yao, X. Yang and T. Y. Zhai, *Nano Energy*, 2017, **31**, 410-417.
- 34. Y. Liu, N. Q. Fu, G. G. Zhang, M. Xu, W. Lu, L. M. Zhou and H. T. Huang, Adv. Funct. Mater., 2017, 27, 1605307.
- 35. K. F. Chen and D. F. Xue, J. Colloid Interface Sci., 2014, 430, 265-271.
- 36. K. H. Kim, W. S. Kim and S. H. Hong, *Nanoscale*, 2019, **11**, 13494-13501.
- 37. Z. M. Zheng, H. H. Wu, H. X. Chen, Y. Cheng, Q. B. Zhang, Q. S. Xie, L. S. Wang, K. L. Zhang, M. S. Wang, D. L. Peng and X. C. Zeng, *Nanoscale*, 2018, 10, 22203-22214.
- 38. Y. Y. Yin, L. S. Fan, Y. Zhang, N. N. Liu, N. Q. Zhang and K. N. Sun, *Nanoscale*, 2019, **11**, 7129-7134.
- 39. R. D. Hu, H. A. Zhao, J. L. Zhang, Q. H. Liang, Y. N. Wang, B. L. Guo, R. Dangol, Y. Zheng, Q. Y. Yan and J. W. Zhu, Nanoscale, 2019, 11, 178-184.

- 40. W. B. Li, J. F. Huang, L. L. Feng, L. Y. Cao and S. W. He, *Nanoscale*, 2018, **10**, 21671-21680.
- 41. L. F. Shen, Y. Wang, H. F. Lv, S. Q. Chen, P. A. van Aken, X. J. Wu, J. Maier and Y. Yu, *Adv. Mater.*, 2018, **30**, 1804378.
- 42. Q. Li, J. N. Guo, J. Zhao, C. C. Wang and F. Yan, *Nanoscale*, 2019, 11, 647-655.
- 43. Z. H. Li, Q. He, X. Xu, Y. Zhao, X. W. Liu, C. Zhou, D. Ai, L. X. Xia and L. Q. Mai, *Adv. Mater.*, 2018, **30**, 1804089.
- 44. W. G. Chong, Y. H. Xiao, J. Q. Huang, S. S. Yao, J. Cui, L. Qin, C. Gao and J. K. Kim, *Nanoscale*, 2018, **10**, 21132-21141.
- 45. H. Zhang, H. Cui, J. Li, Y. Liu, Y. Yang and M. Wang, *Nanoscale*, 2019, DOI: 10.1039/c9nr07388d.
- 46. Y. J. Li, L. Cui, P. F. Da, K. W. Qiu, W. J. Qin, W. B. Hu, X. W. Du, K. Davey, T. Ling and S. Z. Qiao, Adv. Mater., 2018, 30, 1804653.
- 47. K. Bon-Ryul, K. H. Kim and H. J. Ahn, *Nanoscale*, 2019, **11**, 3318-3325.
- 48. W. Q. Wang, X. L. Wang, X. H. Xia, Z. J. Yao, Y. Zhong and J. P. Tu, *Nanoscale*, 2018, **10**, 8162-8169.
- 49. J. X. Liu, B. Chen, C. Y. Fan, F. Shi, S. Ran, J. Y. Yang, X. Song and S. H. Liu, *Crystengcomm*, 2018, 20, 1509-1519.
- 50. S. Ran, J. X. Liu, F. Shi, C. Y. Fan, B. Chen, H. M. Zhang, L. Yu and S. H. Liu, Sol. Energy Mater. Sol. Cells, 2018, 174, 342-350.
- 51. X. Y. Wu, J. T. Wang, G. K. Zhang, K. Katsumata, K. Yanagisawa, T. Sato and S. Yin, Appl. Catal. B-Environ., 2017, 201, 128-136.
- 52. X. Hou, M. J. Wang, L. Fu, Y. P. Chen, N. Jiang, C. T. Lin, Z. W. Wang and J. H. Yu, *Nanoscale*, 2018, **10**, 13004-13010.
- 53. R. Sadri, M. Hosseini, S. N. Kazi, S. Bagheri, A. H. Abdelrazek, G. Ahmadi, N. Zubir, R. Ahmad and N. I. Z. Abidin, J. Colloid Interface Sci., 2018, 509, 140-152.
- 54. S. N. Du, J. L. Sun and P. Wu, *Carbon*, 2018, **140**, 338-351.
- 55. A. Fornieri, A. M. Whiticar, F. Setiawan, E. Portoles, A. C. C. Drachmann, A. Keselman, S. Gronin, C. Thomas, T. Wang, R. Kallaher, G. C. Gardner, E. Berg, M. J. Manfra, A. Stern, C. M. Marcus and F. Nichele, *Nature*, 2019, **569**, 89-92.
- 56. N. A. Gusken, T. Rieger, P. Zellekens, B. Bennemann, E. Neumann, M. I. Lepsa, T. Schapers and D. Grutzmacher, *Nanoscale*, 2017, 9, 16735-16741.
- 57. M. Bjergfelt, D. J. Carrad, T. Kanne, M. Aagesen, E. M. Fiordaliso, E. Johnson, B. Shojaei, C. J. Palmstrom, P. Krogstrup, T. S. Jespersen and J. Nygard, *Nanotechnology*, 2019, **30**, 294005.
- 58. J. C. Bernard, D. A. Modesto, M. S. Medina, A. Zenatti, E. C. Venancio, E. R. Leite, A. J. C. Lanfredi and M. T. Escote, *Mater. Res. Express*, 2019, 6, 086001.
- G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J. Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang and F. Wang, *Nature*, 2019, DOI: 10.1038/s41586-019-1393-y.
- 60. C. Xu, S. A. Song, Z. B. Liu, L. Chen, L. B. Wang, D. X. Fan, N. Kang, X. L. Ma, H. M. Cheng and W. C. Ren, ACS Nano, 2017, 11, 5906-5914.
- 61. Y. C. Zou, Z. G. Chen, E. Z. Zhang, F. X. Xiu, S. Matsumura, L. Yang, M. Hong and J. Zou, *Nanoscale*, 2017, 9, 16591-16595.
- 62. F. Porrati, S. Barth, R. Sachser, O. V. Dobrovolskiy, A. Seybert, A. S. Frangakis and M. Huth, ACS Nano, 2019, 13, 6287-6296.

- 63. R. Cordoba, A. Ibarra, D. Mailly and J. M. De Teresa, *Nano Lett.*, 2018, 18, 1379-1386.
- 64. A. M. Pourrahimi, T. A. Hoang, D. M. Liu, L. K. H. Pallon, S. Gubanski, R. T. Olsson, U. W. Gedde and M. S. Hedenqvist, Adv. Mater., 2016, 28, 8651-8657.
- 65. L. K. H. Pallon, A. T. Hoang, A. M. Pourrahimi, M. S. Hedenqvist, F. Nilsson, S. Gubanski, U. W. Gedde and R. T. Otsson, J. Mater. Chem. A, 2016, 4, 8590-8601.