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1 Wannier Equation and exciton-phonon scattering

The energetic position of the excitonic energies Ev is given by Ev = Esingle
v − Ebinding

v , where Esingle
v is the

single-particle separation between top of valence band in valley K and bottom of conduction-band dispersion
relation in valley K,K ′ and Λ for v = KK,KK ′,KΛ, respectively. The exciton binding energy Ebinding

v is
obtained from the solution of the Wannier equation

~2k2

2mv
Ψv(k)−

∑
q

WqΨv(k + q) = Ebinding
v Ψv(k) , (1)

where mv is the reduced exciton mass in valley v, i.e. 1/mv = 1/me
v + 1/mh

v , with me,h denoting the
effective mass of electrons and holes in excitonic valley v. Furthermore Ψv(k) is the excitonic wave function
in momentum space while Wq is the Coulomb interaction, for which we have used a modified form of the
potential for charges in a thin film of thickness d surrounded by a dielectric environment (see [1] for more
details). Taking into account anisotropic dielectric tensors and solving the Poisson equation with the above
described boundary conditions yields Wq = Vq/εscr(q), with the bare 2D-Fourier transformed Coulomb

potential Vq and a non-local screening, εscr(q) = κ1 tanh
[

1
2

[
α1dq − ln

(
κ1−κ2

κ1+κ2

)]]
, where κi =

√
ε
‖
i ε
⊥
i and

αi =

√
ε
‖
i /ε
⊥
i account for the parallel and perpendicular component of the dielectric tensor εi of monolayer

(i = 1) and environment (i = 2). The key parameters adopted for obtaining the dispersion relation are then
listed below.
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Parameter Value Reference

Esingle
KK′ -Esingle

KK -31 meV [2]

Esingle
KΛ -Esingle

KK 27 meV [2]
mh
K 0.36 m0 [2]

me
K 0.27 m0 [2]

me
K′ 0.36 m0 [2]

me
Λ 0.64 m0 [2]

ε
‖
WS2

13.6 [3]
ε⊥WS2

6.3 [3]
κhBN 4.5 [4]

Table 1: Key parameters adopted, m0 being the free-electron mass and me
Λ being the average over x and y

directions.

The rates Γvv
′

QQ′ of the exciton-phonon coupling can in general be written as (see also [5])

Γvv
′

QQ′ =
2π

~
∑
ξ±

∣∣∣Gvv′ξ|Q′−Q+Q′
v′−Qv|

∣∣∣2(nξ,Q′−Q+Q′
v′−Qv

+
1

2
± 1

2

)
δ
(
εα ± ~ωξ,Q′−Q+Q′

v′−Qv
− εα′

)
,

where Qv address the position in the Brillouin zone of the bottom of valley v, ± refers to emission/absorption,
ξ labels the phonon modes, ~ωξq provides the energy of phonon ξ with momentum q and nξ,q is the
phononic Bose-Einstein distribution. The exciton-phonon scattering coefficients G can be written as (see

also [1])
∣∣∣Gvv′ξq

∣∣∣2 =
∑
p=e,h

∣∣∣gvv′pξqFvv
′

p (q)
∣∣∣2, where p distinguishes between electron/holes, F is the form factor

Fvv′p (q) =
∑

k Ψ∗v′(k)Ψv(k + αpvq), with αpv = (me
v + mh

v )−1
[
±mh/e

v

]
for p = e, h, respectively, while g are

the carrier-phonon scattering coefficients which are approximated with the generic form of a deformation
potential,

gvv
′

pξq =

√
~

2ρAωξq
Dpξq .

Here ρ denotes the surface mass density of the monolayer and A the area of the system. For the coupling
constant Dpξq we adopt the approximations deduced from DFPT calculations in Ref. [6], where long range

acoustic phonons couple linear in momentum Dξq ≡ D(1)
ξ q, while optical phonons and short range acoustic

modes couple with a constant strength Dξq ≡ D(0)
ξ in vicinity of high symmetry points. The phonon energies

as well as constants D(0) and D(1) for all possible intra and intervalley scattering channels are listed in Ref.
[6], including longitudinal and transverse acoustic (LA, TA) and optical (LO, TO) modes as well as the
out-of-plane A1 optical mode, i.e. the mechanisms providing the most efficient scattering channels.

Finally, for describing the radiative decay [1, 7] we use a value of γ corresponding to a decay rate of
null momentum excitons of 8 meV, in accordance with the decay-induced broadenings for WS2 reported in
Ref. [8, 9], although we stress that the radiative recombination rate has a negligible role on the qualitative
aspects of the here-proposed effective diffusion in h-BN encapsulated WS2.

2 Scattering-induced diffusion coefficient

We now explicitly derive two equations concerning the so-called scattering-induced diffusion coefficient shown
in Fig. 5 of the manuscript for describing the role of intervalley scattering in the remarkable evolution of

DKK at low temperature. We first show why Dscat
v = 1

4∂t
(
〈r2〉|vr

)∣∣
scat
≈

∫
r2ηv(r,t)dr∫
4Nv(r,t)dr

. To this purpose

we write the derivative ∂t
(
〈r2〉|vr

)∣∣
scat

as difference quotient, i.e. we evaluate the expectation value of r2
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provided by Nv(r, t) at a generic time t as well as by Nv(r, t+ ∆t)|scat, the latter being the scattering-
induced evolution of Nv(r, t), i.e. the evolution when it is considered only the scattering-induced density
dynamics ∂tNv(r, t)|scat. The scattering-induced infinitesimal evolution can be written as lim∆t→0Nv(r, t+
∆t)|scat = Nv(r, t) + lim∆t→0 ∆t∂tNv(r, t)|scat: Similarly to how the effective diffusion coefficient can be
seen as (proportional to) the derivative of w2, the scattering-induced diffusion coefficient is a measure of the
variation of w2 when only the scattering-induced density dynamics is considered. Inserting Nv(r, t+ ∆t)|scat,
with ∂tNv(r, t)|scat = ηv(r, t) + cvNv(r, t) from Eq. (4) of the manuscript, in the definition of Dscat

v via
infinitesimal difference quotient one has

Dscat
v = lim

∆t→0

1

4∆t

{∫
r2(1 + cv∆t)Nv(r, t)dr∫
(1 + cv∆t)Nv(r, t)dr

+

∫
r2∆tηv(r, t)dr∫

(1 + cv∆t)Nv(r, t)dr
−
∫

r2Nv(r, t)dr∫
Nv(r, t)dr

}
= lim

∆t→0

1

4∆t

∫
r2∆tηv(r, t)dr∫

(1 + cv∆t)Nv(r, t)dr
=

∫
r2ηv(r, t)dr∫
4Nv(r, t)dr

q.e.d. ,

(2)

where in the first equality we used
∫
ηdr = 0 in the denominator, in the second we noticed that the first

and third term of first line cancel out (by definition of space-independent cv) and finally we used the limit
lim∆t→0 cv∆t � 1.

We now derive the relation |Dinterv
v1 | ≈ |Dinterv

v2 |nv2/nv1 for the simplified case of two only valleys v1

and v2 (the extension is trivial). First we not that from the relation ∂tNv|scat =
∑
v′ ∂tNv|v′ it follows

that in the simplified case of two valleys ∂tNv1 |scat = ∂tNv1 |v2 = −∂tNv2 |scat, where we used twice the
relation ∂tNv(r, t)|v′ =−∂tNv′(r, t)|v. Remembering Eq. (4) in the manuscript, this implies that ηv1 =
−ηv2 +

∫
dr∂tNv2 |scat [Nv1(r)/nv1 −Nv2(r)/nv2 ]. In most situations one has |Nv1(r)/nv1 −Nv2(r)/nv2 | �

Nv2(r)/nv2 (even at low temperatures, while Nv1(r)/nv1 is identically equal to Nv2(r)/nv2 when there is no
spatial separation between different valleys). As a consequence, it follows that ηv1 ≈ −ηv2 : Inserting the
latter in the definition of Dscat

v1 [see also Eq. (2)] one has

Dscat
v1 =

∫
r2ηv1(r, t)dr

4nv1
≈ −

∫
r2ηv2(r, t)dr

4nv1
= −Dscat

v2

nv2
nv1

q.e.d. . (3)

3 Spatiotemporal dynamics of absolute intravalley densities and
photoluminescence

While in the manuscript we focused on normalized spatial distributions (see photoluminescence in Fig. 2
of the manuscript), squared width w2 or effective diffusion coefficients D (see Figs. 3-5 in the manuscript),
which provide a direct measure of the spatiotemporal dynamics, in this section we focus on absolute quantities
such as the excitonic population of different valleys or the absolute intensity of the PL.

In Fig. 1 we show the spatiotemporal dynamics of the spatial densities NKK , NKK′ and NKΛ in terms of
absolute populations (first to third column) normalizing w.r.t. to the maximal value reached by the mostly-
populated valley (KΛ at 300 K and KK ′ in the other two cases). In view of the energetic misalignment, the
population of valley KK is much smaller than the one of the other valleys, hence it is rather complicated
to observe its profile in the first column of Fig. 1 (if not in the sub-picosecond timescale or at higher
temperatures): For this reason its profile is also shown in logarithmic scale (column 4). In this way, one can
observe a temporal dependence of the population in the center of the spatial density Nv(r = 0, t) as well as a
different total population of different valleys. While the latter stems from the energy misalignment of different
excitonic valleys combined with temperature and degeneracy of valley KΛ, the former has multiple causes:
First, one can have a change of the total excitonic density due to e.g. direct recombination or intervalley
energy thermalization, the latter being very strong directly after the optical excitation (see also [7] for the
case of spatially-homogeneous optical excitation). When the total excitonic density is almost constant, i.e.
at later stages of the evolution, the main dependence comes from the diffusion because Nv(r = 0, t) is roughly
proportional to 1/w2

v(t) for quasi-Gaussian distributions.
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Figure 1: Spatiotemporal dynamics of absolute values (columns one to three) of the intravalley spatial
densities in valley KK, KK ′ and KΛ, respectively, at three different temperatures. For valley KK we
also plot the same results in logarithmic scale (column four) with different ranges in order to observe the
spatiotemporal dynamics for occupations changing abruptly with temperature.
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In Fig. 2 we focus on the spatiotemporal dynamics of the absolute values of the PL stemming from
incoherent excitons. First, in panel (a) we focus on the dynamics of the PL intensity in the center of the
excited spatial density. One finds behaviours very similar to the ones shown in previous studies of spatially-
homogeneous optical excitation of W-based materials [7]: One can see a first strong decrease induced by
the intervalley thermalization following the polarization-to-population transfer (which in W-based materials
tend to overpopulate valley KK) followed by a subsequent much slower decay induced by the radiative
recombination. Similarly to what has been observed in those previous studies, as far as the temperature
decrease i) the initial fast decrease of intensity with time becomes less steep but ii) lasts much longer,
resulting iii) in a reduced ratio of intensity at later vs earlier stages. Points i) and ii) stem from the reduced
effectiveness of the exciton-phonon scattering (which drives the thermalization) while point iii) stems from
the interplay of overpopulation of valley KK after optical excitation and its low population at smaller
temperatures after the thermalization. In panels (b-d) we plot the spatiotemporal dynamics of the absolute
value of the PL keeping in mind the results of panel (a), i.e. choosing a logarithmic scale with different
range depending on temperature. One can observe a very similar behaviour between Fig. 2(b-d) and the
fourth column of Fig. 1: This indicates once again that the PL spatial density follows the behaviours of
NKK , as already shown in Fig. 3 of the main manuscript by looking at squared width and effective diffusion
coefficient. Note that the sharp decrease of intensity [see 2(a)] together with the color-map plot may give the
impression of a negative effective diffusion at 77K: This is however not the case once the spatial distribution
is properly normalized, as shown in Fig. 2(b) of the manuscript. Analogously, the interplay between steep
increase of second moment [see Fig. 2(c) and 3(c) in the manuscript] and strong decrease of the intensity in
the center [see Fig. 2(a)] leads to an apparently interesting behaviour in the first 10 ps in Fig. 2(d).

Figure 2: Evolution of the logarithm of the PL from incoherent excitons (a) in the center of the spatial density
r = 0 for three different temperatures considered in the manuscript and associated spatiotemporal dynamics
(b-d). In view of the different ratio of PL intensity at later vs earlier stages for different temperatures shown
in panel (a), three different ranges and color scales have been adopted in panels (b-d).
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